This file is indexed.

/usr/include/planarity/graphStructures.h is in libplanarity-dev 3.0.0.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
#ifndef GRAPHSTRUCTURE_H
#define GRAPHSTRUCTURE_H

/*
Copyright (c) 1997-2015, John M. Boyer
All rights reserved.
See the LICENSE.TXT file for licensing information.
*/

#include <stdio.h>
#include "appconst.h"
#include "listcoll.h"
#include "stack.h"

#include "graphFunctionTable.h"
#include "graphExtensions.private.h"

#ifdef __cplusplus
extern "C" {
#endif

// A return value to indicate success prior to completely processing a graph, whereas
// OK signifies EMBEDDABLE (no unreducible obstructions) and NOTOK signifies an exception.
#define NONEMBEDDABLE   -1

// The initial setting for the edge storage capacity expressed as a constant factor of N,
// which is the number of vertices in the graph. By default, array E is allocated enough
// space to contain 3N edges, which is 6N arcs (half edges), but this initial setting
// can be overridden using gp_EnsureArcCapacity(), which is especially efficient if done
// before calling gp_InitGraph() or gp_Read().
#define DEFAULT_EDGE_LIMIT      3

/********************************************************************
 Edge Record Definition

 An edge is defined by a pair of edge records, or arcs, allocated in
 array E of a graph.  An edge record represents the edge in the
 adjacency list of each vertex to which the edge is incident.

 link[2]: the next and previous edge records (arcs) in the adjacency
          list that contains this edge record.

 v: The vertex neighbor of the vertex whose adjacency list contains
    this edge record (an index into array V).

 flags: Bits 0-15 reserved for library; bits 16 and higher for apps
        Bit 0: Visited
        Bit 1: DFS type has been set, versus not set
        Bit 2: DFS tree edge, versus cycle edge (co-tree edge, etc.)
        Bit 3: DFS arc to descendant, versus arc to ancestor
        Bit 4: Inverted (same as marking an edge with a "sign" of -1)
        Bit 5: Arc is directed into the containing vertex only
        Bit 6: Arc is directed from the containing vertex only
 ********************************************************************/

typedef struct
{
	int  link[2];
	int  neighbor;
	unsigned flags;
} edgeRec;

typedef edgeRec * edgeRecP;

#if NIL == 0
#define gp_IsArc(e) (e)
#define gp_IsNotArc(e) (!(e))
#define gp_GetFirstEdge(theGraph) (2)
#elif NIL == -1
#define gp_IsArc(e) ((e) != NIL)
#define gp_IsNotArc(e) ((e) == NIL)
#define gp_GetFirstEdge(theGraph) (0)
#else
#error NIL must be 0 or -1
#endif

#define gp_EdgeInUse(theGraph, e) (gp_IsVertex(gp_GetNeighbor(theGraph, e)))
#define gp_EdgeNotInUse(theGraph, e) (gp_IsNotVertex(gp_GetNeighbor(theGraph, e)))
#define gp_EdgeIndexBound(theGraph) (gp_GetFirstEdge(theGraph) + (theGraph)->arcCapacity)
#define gp_EdgeInUseIndexBound(theGraph) (gp_GetFirstEdge(theGraph) + (((theGraph)->M + sp_GetCurrentSize((theGraph)->edgeHoles)) << 1))

// An edge is represented by two consecutive edge records (arcs) in the edge array E.
// If an even number, xor 1 will add one; if an odd number, xor 1 will subtract 1
#define gp_GetTwinArc(theGraph, Arc) ((Arc) ^ 1)

// Access to adjacency list pointers
#define gp_GetNextArc(theGraph, e) (theGraph->E[e].link[0])
#define gp_GetPrevArc(theGraph, e) (theGraph->E[e].link[1])
#define gp_GetAdjacentArc(theGraph, e, theLink) (theGraph->E[e].link[theLink])

#define gp_SetNextArc(theGraph, e, newNextArc) (theGraph->E[e].link[0] = newNextArc)
#define gp_SetPrevArc(theGraph, e, newPrevArc) (theGraph->E[e].link[1] = newPrevArc)
#define gp_SetAdjacentArc(theGraph, e, theLink, newArc) (theGraph->E[e].link[theLink] = newArc)

// Access to vertex 'neighbor' member indicated by arc
#define gp_GetNeighbor(theGraph, e) (theGraph->E[e].neighbor)
#define gp_SetNeighbor(theGraph, e, v) (theGraph->E[e].neighbor = v)

// Initializer for edge flags
#define gp_InitEdgeFlags(theGraph, e) (theGraph->E[e].flags = 0)

// Definitions of and access to edge flags
#define EDGE_VISITED_MASK		1
#define gp_GetEdgeVisited(theGraph, e) (theGraph->E[e].flags&EDGE_VISITED_MASK)
#define gp_ClearEdgeVisited(theGraph, e) (theGraph->E[e].flags &= ~EDGE_VISITED_MASK)
#define gp_SetEdgeVisited(theGraph, e) (theGraph->E[e].flags |= EDGE_VISITED_MASK)

// The edge type is defined by bits 1-3, 2+4+8=14
#define EDGE_TYPE_MASK		14

// Call gp_GetEdgeType(), then compare to one of these four possibilities
// EDGE_TYPE_CHILD - edge record is an arc to a DFS child
// EDGE_TYPE_FORWARD - edge record is an arc to a DFS descendant, not a DFS child
// EDGE_TYPE_PARENT - edge record is an arc to the DFS parent
// EDGE_TYPE_BACK - edge record is an arc to a DFS ancestor, not the DFS parent
#define EDGE_TYPE_CHILD     14
#define EDGE_TYPE_FORWARD   10
#define EDGE_TYPE_PARENT    6
#define EDGE_TYPE_BACK      2

// EDGE_TYPE_NOTDEFINED - the edge record type has not been defined
// EDGE_TYPE_RANDOMTREE - edge record is part of a randomly generated tree
#define EDGE_TYPE_NOTDEFINED	0
#define EDGE_TYPE_RANDOMTREE	4

#define gp_GetEdgeType(theGraph, e) (theGraph->E[e].flags&EDGE_TYPE_MASK)
#define gp_ClearEdgeType(theGraph, e) (theGraph->E[e].flags &= ~EDGE_TYPE_MASK)
#define gp_SetEdgeType(theGraph, e, type) (theGraph->E[e].flags |= type)
#define gp_ResetEdgeType(theGraph, e, type) \
	(theGraph->E[e].flags = (theGraph->E[e].flags & ~EDGE_TYPE_MASK) | type)

#define EDGEFLAG_INVERTED_MASK 16
#define gp_GetEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags & EDGEFLAG_INVERTED_MASK)
#define gp_SetEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags |= EDGEFLAG_INVERTED_MASK)
#define gp_ClearEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags &= (~EDGEFLAG_INVERTED_MASK))
#define gp_XorEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags ^= EDGEFLAG_INVERTED_MASK)

#define EDGEFLAG_DIRECTION_INONLY	32
#define EDGEFLAG_DIRECTION_OUTONLY	64
#define EDGEFLAG_DIRECTION_MASK		96

// Returns the direction, if any, of the edge record
#define gp_GetDirection(theGraph, e) (theGraph->E[e].flags & EDGEFLAG_DIRECTION_MASK)

//A direction of 0 clears directedness. Otherwise, edge record e is set
//to edgeFlag_Direction and e's twin arc is set to the opposing setting.
#define gp_SetDirection(theGraph, e, edgeFlag_Direction) \
{ \
	if (edgeFlag_Direction == EDGEFLAG_DIRECTION_INONLY) \
	{ \
		theGraph->E[e].flags |= EDGEFLAG_DIRECTION_INONLY; \
		theGraph->E[gp_GetTwinArc(theGraph, e)].flags |= EDGEFLAG_DIRECTION_OUTONLY; \
	} \
	else if (edgeFlag_Direction == EDGEFLAG_DIRECTION_OUTONLY) \
	{ \
		theGraph->E[e].flags |= EDGEFLAG_DIRECTION_OUTONLY; \
		theGraph->E[gp_GetTwinArc(theGraph, e)].flags |= EDGEFLAG_DIRECTION_INONLY; \
	} \
	else \
	{ \
		theGraph->E[e].flags &= ~(EDGEFLAG_DIRECTION_INONLY|EDGEFLAG_DIRECTION_OUTONLY); \
		theGraph->E[gp_GetTwinArc(theGraph, e)].flags &= ~EDGEFLAG_DIRECTION_MASK; \
	} \
}

#define gp_CopyEdgeRec(dstGraph, edst, srcGraph, esrc) (dstGraph->E[edst] = srcGraph->E[esrc])

/********************************************************************
 Vertex Record Definition

 This record definition provides the data members needed for the
 core structural information for both vertices and virtual vertices.
 Vertices are also equipped with additional information provided by
 the vertexInfo structure.

 The vertices of a graph are stored in the first N locations of array V.
 Virtual vertices are secondary vertices used to help represent the
 main vertices in substructural components of a graph (e.g. biconnected
 components).

 link[2]: the first and last edge records (arcs) in the adjacency list
          of the vertex.

 index: In vertices, stores either the depth first index of a vertex or
        the original array index of the vertex if the vertices of the
        graph are sorted by DFI.
        In virtual vertices, the index may be used to indicate the vertex
        that the virtual vertex represents, unless an algorithm has some
        other way of making the association (for example, the planarity
        algorithms rely on biconnected components and therefore place
        virtual vertices of a vertex at positions corresponding to the
        DFS children of the vertex).

 flags: Bits 0-15 reserved for library; bits 16 and higher for apps
        Bit 0: visited, for vertices and virtual vertices
				Use in lieu of TYPE_VERTEX_VISITED in K4 algorithm
		Bit 1: Obstruction type VERTEX_TYPE_SET (versus not set, i.e. VERTEX_TYPE_UNKNOWN)
		Bit 2: Obstruction type qualifier RYW (set) versus RXW (clear)
		Bit 3: Obstruction type qualifier high (set) versus low (clear)
 ********************************************************************/

typedef struct
{
	int  link[2];
	int  index;
	unsigned flags;
} vertexRec;

typedef vertexRec * vertexRecP;

// Accessors for vertex adjacency list links
#define gp_GetFirstArc(theGraph, v) (theGraph->V[v].link[0])
#define gp_GetLastArc(theGraph, v) (theGraph->V[v].link[1])
#define gp_GetArc(theGraph, v, theLink) (theGraph->V[v].link[theLink])

#define gp_SetFirstArc(theGraph, v, newFirstArc) (theGraph->V[v].link[0] = newFirstArc)
#define gp_SetLastArc(theGraph, v, newLastArc) (theGraph->V[v].link[1] = newLastArc)
#define gp_SetArc(theGraph, v, theLink, newArc) (theGraph->V[v].link[theLink] = newArc)

// Vertex conversions and iteration
#if NIL == 0
#define gp_IsVertex(v) (v)
#define gp_IsNotVertex(v) (!(v))

#define gp_GetFirstVertex(theGraph) (1)
#define gp_GetLastVertex(theGraph) ((theGraph)->N)
#define gp_VertexInRange(theGraph, v) ((v) <= (theGraph)->N)
#define gp_VertexInRangeDescending(theGraph, v) (v)

#define gp_PrimaryVertexIndexBound(theGraph) (gp_GetFirstVertex(theGraph) + (theGraph)->N)
#define gp_VertexIndexBound(theGraph) (gp_PrimaryVertexIndexBound(theGraph) + (theGraph)->N)

#define gp_IsVirtualVertex(theGraph, v) ((v) > theGraph->N)
#define gp_IsNotVirtualVertex(theGraph, v) ((v) <= theGraph->N)
#define gp_VirtualVertexInUse(theGraph, virtualVertex) (gp_IsArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_VirtualVertexNotInUse(theGraph, virtualVertex) (gp_IsNotArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_GetFirstVirtualVertex(theGraph) (theGraph->N + 1)
#define gp_GetLastVirtualVertex(theGraph) (theGraph->N + theGraph->NV)
#define gp_VirtualVertexInRange(theGraph, v) ((v) <= theGraph->N + theGraph->NV)

#elif NIL == -1
#define gp_IsVertex(v) ((v) != NIL)
#define gp_IsNotVertex(v) ((v) == NIL)

#define gp_GetFirstVertex(theGraph) (0)
#define gp_GetLastVertex(theGraph) ((theGraph)->N - 1)
#define gp_VertexInRange(theGraph, v) ((v) < (theGraph)->N)
#define gp_VertexInRangeDescending(theGraph, v) ((v) >= 0)

#define gp_PrimaryVertexIndexBound(theGraph) (gp_GetFirstVertex(theGraph) + (theGraph)->N)
#define gp_VertexIndexBound(theGraph) (gp_PrimaryVertexIndexBound(theGraph) + (theGraph)->N)

#define gp_IsVirtualVertex(theGraph, v) ((v) >= theGraph->N)
#define gp_IsNotVirtualVertex(theGraph, v) ((v) < theGraph->N)
#define gp_VirtualVertexInUse(theGraph, virtualVertex) (gp_IsArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_VirtualVertexNotInUse(theGraph, virtualVertex) (gp_IsNotArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_GetFirstVirtualVertex(theGraph) (theGraph->N)
#define gp_GetLastVirtualVertex(theGraph) (theGraph->N + theGraph->NV - 1)
#define gp_VirtualVertexInRange(theGraph, v) ((v) < theGraph->N + theGraph->NV)

#else
#error NIL must be 0 or -1
#endif

#define gp_GetRootFromDFSChild(theGraph, c) ((c) + theGraph->N)
#define gp_GetDFSChildFromRoot(theGraph, R) ((R) - theGraph->N)
#define gp_GetPrimaryVertexFromRoot(theGraph, R) gp_GetVertexParent(theGraph, gp_GetDFSChildFromRoot(theGraph, R))

#define gp_IsSeparatedDFSChild(theGraph, theChild) (gp_VirtualVertexInUse(theGraph, gp_GetRootFromDFSChild(theGraph, theChild)))
#define gp_IsNotSeparatedDFSChild(theGraph, theChild) (gp_VirtualVertexNotInUse(theGraph, gp_GetRootFromDFSChild(theGraph, theChild)))

#define gp_IsDFSTreeRoot(theGraph, v) gp_IsNotVertex(gp_GetVertexParent(theGraph, v))
#define gp_IsNotDFSTreeRoot(theGraph, v) gp_IsVertex(gp_GetVertexParent(theGraph, v))

// Accessors for vertex index
#define gp_GetVertexIndex(theGraph, v) (theGraph->V[v].index)
#define gp_SetVertexIndex(theGraph, v, theIndex) (theGraph->V[v].index = theIndex)

// Initializer for vertex flags
#define gp_InitVertexFlags(theGraph, v) (theGraph->V[v].flags = 0)

// Definitions and accessors for vertex flags
#define VERTEX_VISITED_MASK		1
#define gp_GetVertexVisited(theGraph, v) (theGraph->V[v].flags&VERTEX_VISITED_MASK)
#define gp_ClearVertexVisited(theGraph, v) (theGraph->V[v].flags &= ~VERTEX_VISITED_MASK)
#define gp_SetVertexVisited(theGraph, v) (theGraph->V[v].flags |= VERTEX_VISITED_MASK)

// The obstruction type is defined by bits 1-3, 2+4+8=14
// Bit 1 - 2 if type set, 0 if not
// Bit 2 - 4 if Y side, 0 if X side
// Bit 3 - 8 if high, 0 if low
#define VERTEX_OBSTRUCTIONTYPE_MASK		14

// Call gp_GetVertexObstructionType, then compare to one of these four possibilities
// VERTEX_OBSTRUCTIONTYPE_HIGH_RXW - On the external face path between vertices R and X
// VERTEX_OBSTRUCTIONTYPE_LOW_RXW  - X or on the external face path between vertices X and W
// VERTEX_OBSTRUCTIONTYPE_HIGH_RYW - On the external face path between vertices R and Y
// VERTEX_OBSTRUCTIONTYPE_LOW_RYW  - Y or on the external face path between vertices Y and W
// VERTEX_OBSTRUCTIONTYPE_UNKNOWN  - corresponds to all three bits off
#define VERTEX_OBSTRUCTIONTYPE_HIGH_RXW    	10
#define VERTEX_OBSTRUCTIONTYPE_LOW_RXW     	2
#define VERTEX_OBSTRUCTIONTYPE_HIGH_RYW    	14
#define VERTEX_OBSTRUCTIONTYPE_LOW_RYW    	6
#define VERTEX_OBSTRUCTIONTYPE_UNKNOWN		0

#define VERTEX_OBSTRUCTIONTYPE_MARKED		2
#define VERTEX_OBSTRUCTIONTYPE_UNMARKED		0

#define gp_GetVertexObstructionType(theGraph, v) (theGraph->V[v].flags&VERTEX_OBSTRUCTIONTYPE_MASK)
#define gp_ClearVertexObstructionType(theGraph, v) (theGraph->V[v].flags &= ~VERTEX_OBSTRUCTIONTYPE_MASK)
#define gp_SetVertexObstructionType(theGraph, v, type) (theGraph->V[v].flags |= type)
#define gp_ResetVertexObstructionType(theGraph, v, type) \
	(theGraph->V[v].flags = (theGraph->V[v].flags & ~VERTEX_OBSTRUCTIONTYPE_MASK) | type)

#define gp_CopyVertexRec(dstGraph, vdst, srcGraph, vsrc) (dstGraph->V[vdst] = srcGraph->V[vsrc])

#define gp_SwapVertexRec(dstGraph, vdst, srcGraph, vsrc) \
	{ \
		vertexRec tempV = dstGraph->V[vdst]; \
		dstGraph->V[vdst] = srcGraph->V[vsrc]; \
		srcGraph->V[vsrc] = tempV; \
	}

/********************************************************************
 This structure defines a pair of links used by each vertex and virtual vertex
 to create "short circuit" paths that eliminate unimportant vertices from
 the external face, enabling more efficient traversal of the external face.

 It is also possible to embed the "short circuit" edges, but this approach
 creates a better separation of concerns, imparts greater clarity, and
 removes exceptionalities for handling additional fake "short circuit" edges.

 vertex[2]: The two adjacent vertices along the external face, possibly
 	 	    short-circuiting paths of inactive vertices.
*/

typedef struct
{
    int vertex[2];
} extFaceLinkRec;

typedef extFaceLinkRec * extFaceLinkRecP;

#define gp_GetExtFaceVertex(theGraph, v, link) (theGraph->extFace[v].vertex[link])
#define gp_SetExtFaceVertex(theGraph, v, link, theVertex) (theGraph->extFace[v].vertex[link] = theVertex)

/********************************************************************
 Vertex Info Structure Definition.

 This structure equips the primary (non-virtual) vertices with additional
 information needed for lowpoint and planarity-related algorithms.

	parent: The DFI of the DFS tree parent of this vertex
	leastAncestor: min(DFI of neighbors connected by backedge)
	lowpoint: min(leastAncestor, min(lowpoint of DFS Children))

	visitedInfo: enables algorithms to manage vertex visitation with more than
				 just a flag.  For example, the planarity test flags visitation
				 as a step number that implicitly resets on each step, whereas
				 part of the planar drawing method signifies a first visitation
				 by storing the index of the first edge used to reach a vertex
	pertinentEdge: Used by the planarity method; during Walkup, each vertex
	            that is directly adjacent via a back edge to the vertex v
	            currently being embedded will have the forward edge's index
	            stored in this field.  During Walkdown, each vertex for which
	            this field is set will cause a back edge to be embedded.
                Implicitly resets at each vertex step of the planarity method
	pertinentRootsList: used by Walkup to store a list of child bicomp roots of
                a vertex descendant of the current vertex that are pertinent
                and must be merged by the Walkdown in order to embed the cycle
                edges of the current vertex.  Future pertinent child bicomp roots
                are placed at the end of the list to ensure bicomps that are
                only pertinent are processed first.
    futurePertinentChild: indicates a DFS child with a lowpoint less than the
    			current vertex v.  This member is initialized to the start of
    			the sortedDFSChildList and is advanced in a relaxed manner as
    			needed until one with a lowpoint less than v is found or until
    			there are no more children.
    sortedDFSChildList: at the start of embedding, the list of DFS children of
    			this vertex is calculated in ascending order by DFI (sorted in
    			linear time). The list is used during Walkdown processing of
    			a vertex to process all of its children.  It is also used in
    			future pertinence management when processing the ancestors of
    			the vertex. When a child C is merged into the same bicomp as
    			the vertex, it is removed from the list.
	fwdArcList: at the start of embedding, the "back" edges from a vertex to
                its DFS *descendants* (i.e. the forward arcs of the back edges)
                are separated from the main adjacency list and placed in a
                circular list until they are embedded. The list is sorted in
                ascending DFI order of the descendants (in linear time).
                This member indicates a node in that list.
*/

typedef struct
{
	int parent, leastAncestor, lowpoint;

    int visitedInfo;

    int pertinentEdge,
		pertinentRoots,
		futurePertinentChild,
		sortedDFSChildList,
		fwdArcList;
} vertexInfo;

typedef vertexInfo * vertexInfoP;

#define gp_GetVertexVisitedInfo(theGraph, v) (theGraph->VI[v].visitedInfo)
#define gp_SetVertexVisitedInfo(theGraph, v, theVisitedInfo) (theGraph->VI[v].visitedInfo = theVisitedInfo)

#define gp_GetVertexParent(theGraph, v) (theGraph->VI[v].parent)
#define gp_SetVertexParent(theGraph, v, theParent) (theGraph->VI[v].parent = theParent)

#define gp_GetVertexLeastAncestor(theGraph, v) (theGraph->VI[v].leastAncestor)
#define gp_SetVertexLeastAncestor(theGraph, v, theLeastAncestor) (theGraph->VI[v].leastAncestor = theLeastAncestor)

#define gp_GetVertexLowpoint(theGraph, v) (theGraph->VI[v].lowpoint)
#define gp_SetVertexLowpoint(theGraph, v, theLowpoint) (theGraph->VI[v].lowpoint = theLowpoint)

#define gp_GetVertexPertinentEdge(theGraph, v) (theGraph->VI[v].pertinentEdge)
#define gp_SetVertexPertinentEdge(theGraph, v, e) (theGraph->VI[v].pertinentEdge = e)

#define gp_GetVertexPertinentRootsList(theGraph, v) (theGraph->VI[v].pertinentRoots)
#define gp_SetVertexPertinentRootsList(theGraph, v, pertinentRootsHead) (theGraph->VI[v].pertinentRoots = pertinentRootsHead)

#define gp_GetVertexFirstPertinentRoot(theGraph, v) gp_GetRootFromDFSChild(theGraph, theGraph->VI[v].pertinentRoots)
#define gp_GetVertexFirstPertinentRootChild(theGraph, v) (theGraph->VI[v].pertinentRoots)
#define gp_GetVertexLastPertinentRoot(theGraph, v)  gp_GetRootFromDFSChild(theGraph, LCGetPrev(theGraph->BicompRootLists, theGraph->VI[v].pertinentRoots, NIL))
#define gp_GetVertexLastPertinentRootChild(theGraph, v)  LCGetPrev(theGraph->BicompRootLists, theGraph->VI[v].pertinentRoots, NIL)

#define gp_DeleteVertexPertinentRoot(theGraph, v, R) \
			gp_SetVertexPertinentRootsList(theGraph, v, \
				LCDelete(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))

#define gp_PrependVertexPertinentRoot(theGraph, v, R) \
			gp_SetVertexPertinentRootsList(theGraph, v, \
				LCPrepend(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))

#define gp_AppendVertexPertinentRoot(theGraph, v, R) \
			gp_SetVertexPertinentRootsList(theGraph, v, \
				LCAppend(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))

#define gp_GetVertexFuturePertinentChild(theGraph, v) (theGraph->VI[v].futurePertinentChild)
#define gp_SetVertexFuturePertinentChild(theGraph, v, theFuturePertinentChild) (theGraph->VI[v].futurePertinentChild = theFuturePertinentChild)

// Used to advance futurePertinentChild of w to the next separated DFS child with a lowpoint less than v
// Once futurePertinentChild advances past a child, no future planarity operation could make that child
// relevant to future pertinence
#define gp_UpdateVertexFuturePertinentChild(theGraph, w, v) \
	while (gp_IsVertex(theGraph->VI[w].futurePertinentChild)) \
	{ \
		/* Skip children that 1) aren't future pertinent, 2) have been merged into the bicomp with w */ \
		if (gp_GetVertexLowpoint(theGraph, theGraph->VI[w].futurePertinentChild) >= v || \
			gp_IsNotSeparatedDFSChild(theGraph, theGraph->VI[w].futurePertinentChild)) \
        { \
			theGraph->VI[w].futurePertinentChild = \
					gp_GetVertexNextDFSChild(theGraph, w, gp_GetVertexFuturePertinentChild(theGraph, w)); \
        } \
        else break; \
	}

#define gp_GetVertexSortedDFSChildList(theGraph, v) (theGraph->VI[v].sortedDFSChildList)
#define gp_SetVertexSortedDFSChildList(theGraph, v, theSortedDFSChildList) (theGraph->VI[v].sortedDFSChildList = theSortedDFSChildList)

#define gp_GetVertexNextDFSChild(theGraph, v, c) LCGetNext(theGraph->sortedDFSChildLists, gp_GetVertexSortedDFSChildList(theGraph, v), c)

#define gp_AppendDFSChild(theGraph, v, c) \
		LCAppend(theGraph->sortedDFSChildLists, gp_GetVertexSortedDFSChildList(theGraph, v), c)

#define gp_GetVertexFwdArcList(theGraph, v) (theGraph->VI[v].fwdArcList)
#define gp_SetVertexFwdArcList(theGraph, v, theFwdArcList) (theGraph->VI[v].fwdArcList = theFwdArcList)

#define gp_CopyVertexInfo(dstGraph, dstI, srcGraph, srcI) (dstGraph->VI[dstI] = srcGraph->VI[srcI])

#define gp_SwapVertexInfo(dstGraph, dstPos, srcGraph, srcPos) \
	{ \
		vertexInfo tempVI = dstGraph->VI[dstPos]; \
		dstGraph->VI[dstPos] = srcGraph->VI[srcPos]; \
		srcGraph->VI[srcPos] = tempVI; \
	}

/********************************************************************
 Variables needed in embedding by Kuratowski subgraph isolator:
        minorType: the type of planarity obstruction found.
        v: the current vertex being processed
        r: the root of the bicomp on which the Walkdown failed
        x,y: stopping vertices on bicomp rooted by r
        w: pertinent vertex on ext. face path below x and y
        px, py: attachment points of x-y path,
        z: Unused except in minors D and E (not needed in A, B, C).

        ux,dx: endpoints of unembedded edge that helps connext x with
                ancestor of v
        uy,dy: endpoints of unembedded edge that helps connext y with
                ancestor of v
        dw: descendant endpoint in unembedded edge to v
        uz,dz: endpoints of unembedded edge that helps connext z with
                ancestor of v (for minors B and E, not A, C, D).
*/

typedef struct
{
    int minorType;
    int v, r, x, y, w, px, py, z;
    int ux, dx, uy, dy, dw, uz, dz;
} isolatorContext;

typedef isolatorContext * isolatorContextP;

#define MINORTYPE_A         1
#define MINORTYPE_B         2
#define MINORTYPE_C         4
#define MINORTYPE_D         8
#define MINORTYPE_E         16
#define MINORTYPE_E1        32
#define MINORTYPE_E2        64
#define MINORTYPE_E3        128
#define MINORTYPE_E4        256

#define MINORTYPE_E5        512
#define MINORTYPE_E6        1024
#define MINORTYPE_E7        2048

/********************************************************************
 Graph structure definition
        V : Array of vertex records (allocated size N + NV)
        VI: Array of additional vertexInfo structures (allocated size N)
        N : Number of primary vertices (the "order" of the graph)
        NV: Number of virtual vertices (currently always equal to N)

        E : Array of edge records (edge records come in pairs and represent half edges, or arcs)
        M: Number of edges (the "size" of the graph)
        arcCapacity: the maximum number of edge records allowed in E (the size of E)
        edgeHoles: free locations in E where edges have been deleted

        theStack: Used by various graph routines needing a stack
        internalFlags: Additional state information about the graph
        embedFlags: controls type of embedding (e.g. planar)

        IC: contains additional useful variables for Kuratowski subgraph isolation.
        BicompRootLists: storage space for pertinent bicomp root lists that develop
                        during embedding
        sortedDFSChildLists: storage for the sorted DFS child lists of each vertex
        extFace: Array of (N + NV) external face short circuit records

        extensions: a list of extension data structures
        functions: a table of function pointers that can be overloaded to provide
                   extension behaviors to the graph
*/

typedef struct
{
        vertexRecP V;
        vertexInfoP VI;
        int N, NV;

        edgeRecP E;
        int M, arcCapacity;
        stackP edgeHoles;

        stackP theStack;
        int internalFlags, embedFlags;

        isolatorContext IC;
        listCollectionP BicompRootLists, sortedDFSChildLists;
        extFaceLinkRecP extFace;

        graphExtensionP extensions;
        graphFunctionTable functions;

} baseGraphStructure;

typedef baseGraphStructure * graphP;

/* Flags for graph:
        FLAGS_DFSNUMBERED is set if DFSNumber() has succeeded for the graph
        FLAGS_SORTEDBYDFI records whether the graph is in original vertex
                order or sorted by depth first index.  Successive calls to
                SortVertices() toggle this bit.
        FLAGS_OBSTRUCTIONFOUND is set by gp_Embed() if an embedding obstruction
                was isolated in the graph returned.  It is cleared by gp_Embed()
                if an obstruction was not found.  The flag is used by
                gp_TestEmbedResultIntegrity() to decide what integrity tests to run.
        FLAGS_ZEROBASEDIO is typically set by gp_Read() to indicate that the
        		adjacency list representation began with index 0.
*/

#define FLAGS_DFSNUMBERED       1
#define FLAGS_SORTEDBYDFI       2
#define FLAGS_OBSTRUCTIONFOUND  4
#define FLAGS_ZEROBASEDIO		8

/********************************************************************
 More link structure accessors/manipulators
 ********************************************************************/

// Definitions that enable getting the next or previous arc
// as if the adjacency list were circular, i.e. that the
// first arc and last arc were linked
#define gp_GetNextArcCircular(theGraph, e) \
	(gp_IsArc(gp_GetNextArc(theGraph, e)) ? \
			gp_GetNextArc(theGraph, e) : \
			gp_GetFirstArc(theGraph, theGraph->E[gp_GetTwinArc(theGraph, e)].neighbor))

#define gp_GetPrevArcCircular(theGraph, e) \
	(gp_IsArc(gp_GetPrevArc(theGraph, e)) ? \
		gp_GetPrevArc(theGraph, e) : \
		gp_GetLastArc(theGraph, theGraph->E[gp_GetTwinArc(theGraph, e)].neighbor))

// Definitions that make the cross-link binding between a vertex and an arc
// The old first or last arc should be bound to this arc by separate calls,
// e.g. see gp_AttachFirstArc() and gp_AttachLastArc()
#define gp_BindFirstArc(theGraph, v, arc) \
	{ \
		gp_SetPrevArc(theGraph, arc, NIL); \
		gp_SetFirstArc(theGraph, v, arc); \
    }

#define gp_BindLastArc(theGraph, v, arc) \
	{ \
    	gp_SetNextArc(theGraph, arc, NIL); \
    	gp_SetLastArc(theGraph, v, arc); \
    }

// Attaches an arc between the current binding between a vertex and its first arc
#define gp_AttachFirstArc(theGraph, v, arc) \
	{ \
		if (gp_IsArc(gp_GetFirstArc(theGraph, v))) \
		{ \
			gp_SetNextArc(theGraph, arc, gp_GetFirstArc(theGraph, v)); \
			gp_SetPrevArc(theGraph, gp_GetFirstArc(theGraph, v), arc); \
		} \
		else gp_BindLastArc(theGraph, v, arc); \
		gp_BindFirstArc(theGraph, v, arc); \
	}

// Attaches an arc between the current binding betwen a vertex and its last arc
#define gp_AttachLastArc(theGraph, v, arc) \
	{ \
		if (gp_IsArc(gp_GetLastArc(theGraph, v))) \
		{ \
			gp_SetPrevArc(theGraph, arc, gp_GetLastArc(theGraph, v)); \
			gp_SetNextArc(theGraph, gp_GetLastArc(theGraph, v), arc); \
		} \
		else gp_BindFirstArc(theGraph, v, arc); \
		gp_BindLastArc(theGraph, v, arc); \
	}

// Moves an arc that is in the adjacency list of v to the start of the adjacency list
#define gp_MoveArcToFirst(theGraph, v, arc) \
	if (arc != gp_GetFirstArc(theGraph, v)) \
	{ \
		/* If the arc is last in the adjacency list of uparent,
		   then we delete it by adjacency list end management */ \
		if (arc == gp_GetLastArc(theGraph, v)) \
		{ \
		    gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), NIL); \
			gp_SetLastArc(theGraph, v, gp_GetPrevArc(theGraph, arc)); \
		} \
		/* Otherwise, we delete the arc from the middle of the list */ \
		else \
		{ \
			gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), gp_GetNextArc(theGraph, arc)); \
			gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), gp_GetPrevArc(theGraph, arc)); \
		} \
\
		/* Now add arc e as the new first arc of uparent.
		   Note that the adjacency list is non-empty at this time */ \
		 gp_SetNextArc(theGraph, arc, gp_GetFirstArc(theGraph, v)); \
		 gp_SetPrevArc(theGraph, gp_GetFirstArc(theGraph, v), arc); \
		 gp_BindFirstArc(theGraph, v, arc); \
	}

// Moves an arc that is in the adjacency list of v to the end of the adjacency list
#define gp_MoveArcToLast(theGraph, v, arc) \
	if (arc != gp_GetLastArc(theGraph, v)) \
	{ \
		 /* If the arc is first in the adjacency list of vertex v,
		    then we delete it by adjacency list end management */ \
		 if (arc == gp_GetFirstArc(theGraph, v)) \
		 { \
			 gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), NIL); \
			 gp_SetFirstArc(theGraph, v, gp_GetNextArc(theGraph, arc)); \
		 } \
		 /* Otherwise, we delete the arc from the middle of the list */ \
		 else \
		 { \
			 gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), gp_GetNextArc(theGraph, arc)); \
			 gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), gp_GetPrevArc(theGraph, arc)); \
		 } \
\
		 /* Now add the arc as the new last arc of v.
		    Note that the adjacency list is non-empty at this time */ \
		 gp_SetPrevArc(theGraph, arc, gp_GetLastArc(theGraph, v)); \
		 gp_SetNextArc(theGraph, gp_GetLastArc(theGraph, v), arc); \
		 gp_BindLastArc(theGraph, v, arc); \
	}

// Methods for attaching an arc into the adjacency list or detaching an arc from it.
// The terms AddArc, InsertArc and DeleteArc are not used because the arcs are not
// inserted or added to or deleted from storage (only whole edges are inserted or deleted)
void	gp_AttachArc(graphP theGraph, int v, int e, int link, int newArc);
void 	gp_DetachArc(graphP theGraph, int arc);

/********************************************************************
 PERTINENT()
 A vertex is pertinent in a partially processed graph if there is an
 unprocessed back edge between the vertex v whose edges are currently
 being processed and either the vertex or a DFS descendant D of the
 vertex not in the same bicomp as the vertex.

 The vertex is either directly adjacent to v by an unembedded back edge
 or there is an unembedded back edge (v, D) and the vertex is a cut
 vertex in the partially processed graph along the DFS tree path from
 D to v.

 Pertinence is a dynamic property that can change for a vertex after
 each edge addition.  In other words, a vertex can become non-pertinent
 during step v as more back edges to v are embedded.
 ********************************************************************/

#define PERTINENT(theGraph, theVertex) \
		(gp_IsArc(gp_GetVertexPertinentEdge(theGraph, theVertex)) || \
		 gp_IsVertex(gp_GetVertexPertinentRootsList(theGraph, theVertex)))

#define NOTPERTINENT(theGraph, theVertex) \
		(gp_IsNotArc(gp_GetVertexPertinentEdge(theGraph, theVertex)) && \
		 gp_IsNotVertex(gp_GetVertexPertinentRootsList(theGraph, theVertex)))

/********************************************************************
 FUTUREPERTINENT()
 A vertex is future-pertinent in a partially processed graph if
 there is an unprocessed back edge between a DFS ancestor A of the
 vertex v whose edges are currently being processed and either
 theVertex or a DFS descendant D of theVertex not in the same bicomp
 as theVertex.

 Either theVertex is directly adjacent to A by an unembedded back edge
 or there is an unembedded back edge (A, D) and theVertex is a cut
 vertex in the partially processed graph along the DFS tree path from
 D to A.

 If no more edges are added to the partially processed graph prior to
 processing the edges of A, then the vertex would be pertinent.
 The addition of edges to the partially processed graph can alter
 both the pertinence and future pertinence of a vertex.  For example,
 if the vertex is pertinent due to an unprocessed back edge (v, D1) and
 future pertinent due to an unprocessed back edge (A, D2), then the
 vertex may lose both its pertinence and future pertinence when edge
 (v, D1) is added if D2 is in the same subtree as D1.

 Generally, pertinence and future pertinence are dynamic properties
 that can change for a vertex after each edge addition.

 Note that gp_UpdateVertexFuturePertinentChild() must be called before
 this macro. Since it is a statement and not a void expression, the
 desired commented out version does not compile (except with special
 compiler extensions not assumed by this code).
 ********************************************************************/

#define FUTUREPERTINENT(theGraph, theVertex, v) \
        (  theGraph->VI[theVertex].leastAncestor < v || \
           (gp_IsVertex(theGraph->VI[theVertex].futurePertinentChild) && \
            theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint < v) )

#define NOTFUTUREPERTINENT(theGraph, theVertex, v) \
        (  theGraph->VI[theVertex].leastAncestor >= v && \
           (gp_IsNotVertex(theGraph->VI[theVertex].futurePertinentChild) || \
            theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint >= v) )

// This is the definition that would be preferrable if a while loop could be a void expression
//#define FUTUREPERTINENT(theGraph, theVertex, v)
//        (  theGraph->VI[theVertex].leastAncestor < v ||
//           ((gp_UpdateVertexFuturePertinentChild(theGraph, theVertex, v),
//        	   gp_IsArc(theGraph->VI[theVertex].futurePertinentChild)) &&
//             theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint < v) )

/********************************************************************
 INACTIVE()
 For planarity algorithms, a vertex is inactive if it is neither pertinent
 nor future pertinent.
 ********************************************************************/

#define INACTIVE(theGraph, theVertex, v) \
        (  NOTPERTINENT(theGraph, theVertex) && \
           NOTFUTUREPERTINENT(theGraph, theVertex, v))

#ifdef __cplusplus
}
#endif

#endif