/usr/include/planarity/graphStructures.h is in libplanarity-dev 3.0.0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | #ifndef GRAPHSTRUCTURE_H
#define GRAPHSTRUCTURE_H
/*
Copyright (c) 1997-2015, John M. Boyer
All rights reserved.
See the LICENSE.TXT file for licensing information.
*/
#include <stdio.h>
#include "appconst.h"
#include "listcoll.h"
#include "stack.h"
#include "graphFunctionTable.h"
#include "graphExtensions.private.h"
#ifdef __cplusplus
extern "C" {
#endif
// A return value to indicate success prior to completely processing a graph, whereas
// OK signifies EMBEDDABLE (no unreducible obstructions) and NOTOK signifies an exception.
#define NONEMBEDDABLE -1
// The initial setting for the edge storage capacity expressed as a constant factor of N,
// which is the number of vertices in the graph. By default, array E is allocated enough
// space to contain 3N edges, which is 6N arcs (half edges), but this initial setting
// can be overridden using gp_EnsureArcCapacity(), which is especially efficient if done
// before calling gp_InitGraph() or gp_Read().
#define DEFAULT_EDGE_LIMIT 3
/********************************************************************
Edge Record Definition
An edge is defined by a pair of edge records, or arcs, allocated in
array E of a graph. An edge record represents the edge in the
adjacency list of each vertex to which the edge is incident.
link[2]: the next and previous edge records (arcs) in the adjacency
list that contains this edge record.
v: The vertex neighbor of the vertex whose adjacency list contains
this edge record (an index into array V).
flags: Bits 0-15 reserved for library; bits 16 and higher for apps
Bit 0: Visited
Bit 1: DFS type has been set, versus not set
Bit 2: DFS tree edge, versus cycle edge (co-tree edge, etc.)
Bit 3: DFS arc to descendant, versus arc to ancestor
Bit 4: Inverted (same as marking an edge with a "sign" of -1)
Bit 5: Arc is directed into the containing vertex only
Bit 6: Arc is directed from the containing vertex only
********************************************************************/
typedef struct
{
int link[2];
int neighbor;
unsigned flags;
} edgeRec;
typedef edgeRec * edgeRecP;
#if NIL == 0
#define gp_IsArc(e) (e)
#define gp_IsNotArc(e) (!(e))
#define gp_GetFirstEdge(theGraph) (2)
#elif NIL == -1
#define gp_IsArc(e) ((e) != NIL)
#define gp_IsNotArc(e) ((e) == NIL)
#define gp_GetFirstEdge(theGraph) (0)
#else
#error NIL must be 0 or -1
#endif
#define gp_EdgeInUse(theGraph, e) (gp_IsVertex(gp_GetNeighbor(theGraph, e)))
#define gp_EdgeNotInUse(theGraph, e) (gp_IsNotVertex(gp_GetNeighbor(theGraph, e)))
#define gp_EdgeIndexBound(theGraph) (gp_GetFirstEdge(theGraph) + (theGraph)->arcCapacity)
#define gp_EdgeInUseIndexBound(theGraph) (gp_GetFirstEdge(theGraph) + (((theGraph)->M + sp_GetCurrentSize((theGraph)->edgeHoles)) << 1))
// An edge is represented by two consecutive edge records (arcs) in the edge array E.
// If an even number, xor 1 will add one; if an odd number, xor 1 will subtract 1
#define gp_GetTwinArc(theGraph, Arc) ((Arc) ^ 1)
// Access to adjacency list pointers
#define gp_GetNextArc(theGraph, e) (theGraph->E[e].link[0])
#define gp_GetPrevArc(theGraph, e) (theGraph->E[e].link[1])
#define gp_GetAdjacentArc(theGraph, e, theLink) (theGraph->E[e].link[theLink])
#define gp_SetNextArc(theGraph, e, newNextArc) (theGraph->E[e].link[0] = newNextArc)
#define gp_SetPrevArc(theGraph, e, newPrevArc) (theGraph->E[e].link[1] = newPrevArc)
#define gp_SetAdjacentArc(theGraph, e, theLink, newArc) (theGraph->E[e].link[theLink] = newArc)
// Access to vertex 'neighbor' member indicated by arc
#define gp_GetNeighbor(theGraph, e) (theGraph->E[e].neighbor)
#define gp_SetNeighbor(theGraph, e, v) (theGraph->E[e].neighbor = v)
// Initializer for edge flags
#define gp_InitEdgeFlags(theGraph, e) (theGraph->E[e].flags = 0)
// Definitions of and access to edge flags
#define EDGE_VISITED_MASK 1
#define gp_GetEdgeVisited(theGraph, e) (theGraph->E[e].flags&EDGE_VISITED_MASK)
#define gp_ClearEdgeVisited(theGraph, e) (theGraph->E[e].flags &= ~EDGE_VISITED_MASK)
#define gp_SetEdgeVisited(theGraph, e) (theGraph->E[e].flags |= EDGE_VISITED_MASK)
// The edge type is defined by bits 1-3, 2+4+8=14
#define EDGE_TYPE_MASK 14
// Call gp_GetEdgeType(), then compare to one of these four possibilities
// EDGE_TYPE_CHILD - edge record is an arc to a DFS child
// EDGE_TYPE_FORWARD - edge record is an arc to a DFS descendant, not a DFS child
// EDGE_TYPE_PARENT - edge record is an arc to the DFS parent
// EDGE_TYPE_BACK - edge record is an arc to a DFS ancestor, not the DFS parent
#define EDGE_TYPE_CHILD 14
#define EDGE_TYPE_FORWARD 10
#define EDGE_TYPE_PARENT 6
#define EDGE_TYPE_BACK 2
// EDGE_TYPE_NOTDEFINED - the edge record type has not been defined
// EDGE_TYPE_RANDOMTREE - edge record is part of a randomly generated tree
#define EDGE_TYPE_NOTDEFINED 0
#define EDGE_TYPE_RANDOMTREE 4
#define gp_GetEdgeType(theGraph, e) (theGraph->E[e].flags&EDGE_TYPE_MASK)
#define gp_ClearEdgeType(theGraph, e) (theGraph->E[e].flags &= ~EDGE_TYPE_MASK)
#define gp_SetEdgeType(theGraph, e, type) (theGraph->E[e].flags |= type)
#define gp_ResetEdgeType(theGraph, e, type) \
(theGraph->E[e].flags = (theGraph->E[e].flags & ~EDGE_TYPE_MASK) | type)
#define EDGEFLAG_INVERTED_MASK 16
#define gp_GetEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags & EDGEFLAG_INVERTED_MASK)
#define gp_SetEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags |= EDGEFLAG_INVERTED_MASK)
#define gp_ClearEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags &= (~EDGEFLAG_INVERTED_MASK))
#define gp_XorEdgeFlagInverted(theGraph, e) (theGraph->E[e].flags ^= EDGEFLAG_INVERTED_MASK)
#define EDGEFLAG_DIRECTION_INONLY 32
#define EDGEFLAG_DIRECTION_OUTONLY 64
#define EDGEFLAG_DIRECTION_MASK 96
// Returns the direction, if any, of the edge record
#define gp_GetDirection(theGraph, e) (theGraph->E[e].flags & EDGEFLAG_DIRECTION_MASK)
//A direction of 0 clears directedness. Otherwise, edge record e is set
//to edgeFlag_Direction and e's twin arc is set to the opposing setting.
#define gp_SetDirection(theGraph, e, edgeFlag_Direction) \
{ \
if (edgeFlag_Direction == EDGEFLAG_DIRECTION_INONLY) \
{ \
theGraph->E[e].flags |= EDGEFLAG_DIRECTION_INONLY; \
theGraph->E[gp_GetTwinArc(theGraph, e)].flags |= EDGEFLAG_DIRECTION_OUTONLY; \
} \
else if (edgeFlag_Direction == EDGEFLAG_DIRECTION_OUTONLY) \
{ \
theGraph->E[e].flags |= EDGEFLAG_DIRECTION_OUTONLY; \
theGraph->E[gp_GetTwinArc(theGraph, e)].flags |= EDGEFLAG_DIRECTION_INONLY; \
} \
else \
{ \
theGraph->E[e].flags &= ~(EDGEFLAG_DIRECTION_INONLY|EDGEFLAG_DIRECTION_OUTONLY); \
theGraph->E[gp_GetTwinArc(theGraph, e)].flags &= ~EDGEFLAG_DIRECTION_MASK; \
} \
}
#define gp_CopyEdgeRec(dstGraph, edst, srcGraph, esrc) (dstGraph->E[edst] = srcGraph->E[esrc])
/********************************************************************
Vertex Record Definition
This record definition provides the data members needed for the
core structural information for both vertices and virtual vertices.
Vertices are also equipped with additional information provided by
the vertexInfo structure.
The vertices of a graph are stored in the first N locations of array V.
Virtual vertices are secondary vertices used to help represent the
main vertices in substructural components of a graph (e.g. biconnected
components).
link[2]: the first and last edge records (arcs) in the adjacency list
of the vertex.
index: In vertices, stores either the depth first index of a vertex or
the original array index of the vertex if the vertices of the
graph are sorted by DFI.
In virtual vertices, the index may be used to indicate the vertex
that the virtual vertex represents, unless an algorithm has some
other way of making the association (for example, the planarity
algorithms rely on biconnected components and therefore place
virtual vertices of a vertex at positions corresponding to the
DFS children of the vertex).
flags: Bits 0-15 reserved for library; bits 16 and higher for apps
Bit 0: visited, for vertices and virtual vertices
Use in lieu of TYPE_VERTEX_VISITED in K4 algorithm
Bit 1: Obstruction type VERTEX_TYPE_SET (versus not set, i.e. VERTEX_TYPE_UNKNOWN)
Bit 2: Obstruction type qualifier RYW (set) versus RXW (clear)
Bit 3: Obstruction type qualifier high (set) versus low (clear)
********************************************************************/
typedef struct
{
int link[2];
int index;
unsigned flags;
} vertexRec;
typedef vertexRec * vertexRecP;
// Accessors for vertex adjacency list links
#define gp_GetFirstArc(theGraph, v) (theGraph->V[v].link[0])
#define gp_GetLastArc(theGraph, v) (theGraph->V[v].link[1])
#define gp_GetArc(theGraph, v, theLink) (theGraph->V[v].link[theLink])
#define gp_SetFirstArc(theGraph, v, newFirstArc) (theGraph->V[v].link[0] = newFirstArc)
#define gp_SetLastArc(theGraph, v, newLastArc) (theGraph->V[v].link[1] = newLastArc)
#define gp_SetArc(theGraph, v, theLink, newArc) (theGraph->V[v].link[theLink] = newArc)
// Vertex conversions and iteration
#if NIL == 0
#define gp_IsVertex(v) (v)
#define gp_IsNotVertex(v) (!(v))
#define gp_GetFirstVertex(theGraph) (1)
#define gp_GetLastVertex(theGraph) ((theGraph)->N)
#define gp_VertexInRange(theGraph, v) ((v) <= (theGraph)->N)
#define gp_VertexInRangeDescending(theGraph, v) (v)
#define gp_PrimaryVertexIndexBound(theGraph) (gp_GetFirstVertex(theGraph) + (theGraph)->N)
#define gp_VertexIndexBound(theGraph) (gp_PrimaryVertexIndexBound(theGraph) + (theGraph)->N)
#define gp_IsVirtualVertex(theGraph, v) ((v) > theGraph->N)
#define gp_IsNotVirtualVertex(theGraph, v) ((v) <= theGraph->N)
#define gp_VirtualVertexInUse(theGraph, virtualVertex) (gp_IsArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_VirtualVertexNotInUse(theGraph, virtualVertex) (gp_IsNotArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_GetFirstVirtualVertex(theGraph) (theGraph->N + 1)
#define gp_GetLastVirtualVertex(theGraph) (theGraph->N + theGraph->NV)
#define gp_VirtualVertexInRange(theGraph, v) ((v) <= theGraph->N + theGraph->NV)
#elif NIL == -1
#define gp_IsVertex(v) ((v) != NIL)
#define gp_IsNotVertex(v) ((v) == NIL)
#define gp_GetFirstVertex(theGraph) (0)
#define gp_GetLastVertex(theGraph) ((theGraph)->N - 1)
#define gp_VertexInRange(theGraph, v) ((v) < (theGraph)->N)
#define gp_VertexInRangeDescending(theGraph, v) ((v) >= 0)
#define gp_PrimaryVertexIndexBound(theGraph) (gp_GetFirstVertex(theGraph) + (theGraph)->N)
#define gp_VertexIndexBound(theGraph) (gp_PrimaryVertexIndexBound(theGraph) + (theGraph)->N)
#define gp_IsVirtualVertex(theGraph, v) ((v) >= theGraph->N)
#define gp_IsNotVirtualVertex(theGraph, v) ((v) < theGraph->N)
#define gp_VirtualVertexInUse(theGraph, virtualVertex) (gp_IsArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_VirtualVertexNotInUse(theGraph, virtualVertex) (gp_IsNotArc(gp_GetFirstArc(theGraph, virtualVertex)))
#define gp_GetFirstVirtualVertex(theGraph) (theGraph->N)
#define gp_GetLastVirtualVertex(theGraph) (theGraph->N + theGraph->NV - 1)
#define gp_VirtualVertexInRange(theGraph, v) ((v) < theGraph->N + theGraph->NV)
#else
#error NIL must be 0 or -1
#endif
#define gp_GetRootFromDFSChild(theGraph, c) ((c) + theGraph->N)
#define gp_GetDFSChildFromRoot(theGraph, R) ((R) - theGraph->N)
#define gp_GetPrimaryVertexFromRoot(theGraph, R) gp_GetVertexParent(theGraph, gp_GetDFSChildFromRoot(theGraph, R))
#define gp_IsSeparatedDFSChild(theGraph, theChild) (gp_VirtualVertexInUse(theGraph, gp_GetRootFromDFSChild(theGraph, theChild)))
#define gp_IsNotSeparatedDFSChild(theGraph, theChild) (gp_VirtualVertexNotInUse(theGraph, gp_GetRootFromDFSChild(theGraph, theChild)))
#define gp_IsDFSTreeRoot(theGraph, v) gp_IsNotVertex(gp_GetVertexParent(theGraph, v))
#define gp_IsNotDFSTreeRoot(theGraph, v) gp_IsVertex(gp_GetVertexParent(theGraph, v))
// Accessors for vertex index
#define gp_GetVertexIndex(theGraph, v) (theGraph->V[v].index)
#define gp_SetVertexIndex(theGraph, v, theIndex) (theGraph->V[v].index = theIndex)
// Initializer for vertex flags
#define gp_InitVertexFlags(theGraph, v) (theGraph->V[v].flags = 0)
// Definitions and accessors for vertex flags
#define VERTEX_VISITED_MASK 1
#define gp_GetVertexVisited(theGraph, v) (theGraph->V[v].flags&VERTEX_VISITED_MASK)
#define gp_ClearVertexVisited(theGraph, v) (theGraph->V[v].flags &= ~VERTEX_VISITED_MASK)
#define gp_SetVertexVisited(theGraph, v) (theGraph->V[v].flags |= VERTEX_VISITED_MASK)
// The obstruction type is defined by bits 1-3, 2+4+8=14
// Bit 1 - 2 if type set, 0 if not
// Bit 2 - 4 if Y side, 0 if X side
// Bit 3 - 8 if high, 0 if low
#define VERTEX_OBSTRUCTIONTYPE_MASK 14
// Call gp_GetVertexObstructionType, then compare to one of these four possibilities
// VERTEX_OBSTRUCTIONTYPE_HIGH_RXW - On the external face path between vertices R and X
// VERTEX_OBSTRUCTIONTYPE_LOW_RXW - X or on the external face path between vertices X and W
// VERTEX_OBSTRUCTIONTYPE_HIGH_RYW - On the external face path between vertices R and Y
// VERTEX_OBSTRUCTIONTYPE_LOW_RYW - Y or on the external face path between vertices Y and W
// VERTEX_OBSTRUCTIONTYPE_UNKNOWN - corresponds to all three bits off
#define VERTEX_OBSTRUCTIONTYPE_HIGH_RXW 10
#define VERTEX_OBSTRUCTIONTYPE_LOW_RXW 2
#define VERTEX_OBSTRUCTIONTYPE_HIGH_RYW 14
#define VERTEX_OBSTRUCTIONTYPE_LOW_RYW 6
#define VERTEX_OBSTRUCTIONTYPE_UNKNOWN 0
#define VERTEX_OBSTRUCTIONTYPE_MARKED 2
#define VERTEX_OBSTRUCTIONTYPE_UNMARKED 0
#define gp_GetVertexObstructionType(theGraph, v) (theGraph->V[v].flags&VERTEX_OBSTRUCTIONTYPE_MASK)
#define gp_ClearVertexObstructionType(theGraph, v) (theGraph->V[v].flags &= ~VERTEX_OBSTRUCTIONTYPE_MASK)
#define gp_SetVertexObstructionType(theGraph, v, type) (theGraph->V[v].flags |= type)
#define gp_ResetVertexObstructionType(theGraph, v, type) \
(theGraph->V[v].flags = (theGraph->V[v].flags & ~VERTEX_OBSTRUCTIONTYPE_MASK) | type)
#define gp_CopyVertexRec(dstGraph, vdst, srcGraph, vsrc) (dstGraph->V[vdst] = srcGraph->V[vsrc])
#define gp_SwapVertexRec(dstGraph, vdst, srcGraph, vsrc) \
{ \
vertexRec tempV = dstGraph->V[vdst]; \
dstGraph->V[vdst] = srcGraph->V[vsrc]; \
srcGraph->V[vsrc] = tempV; \
}
/********************************************************************
This structure defines a pair of links used by each vertex and virtual vertex
to create "short circuit" paths that eliminate unimportant vertices from
the external face, enabling more efficient traversal of the external face.
It is also possible to embed the "short circuit" edges, but this approach
creates a better separation of concerns, imparts greater clarity, and
removes exceptionalities for handling additional fake "short circuit" edges.
vertex[2]: The two adjacent vertices along the external face, possibly
short-circuiting paths of inactive vertices.
*/
typedef struct
{
int vertex[2];
} extFaceLinkRec;
typedef extFaceLinkRec * extFaceLinkRecP;
#define gp_GetExtFaceVertex(theGraph, v, link) (theGraph->extFace[v].vertex[link])
#define gp_SetExtFaceVertex(theGraph, v, link, theVertex) (theGraph->extFace[v].vertex[link] = theVertex)
/********************************************************************
Vertex Info Structure Definition.
This structure equips the primary (non-virtual) vertices with additional
information needed for lowpoint and planarity-related algorithms.
parent: The DFI of the DFS tree parent of this vertex
leastAncestor: min(DFI of neighbors connected by backedge)
lowpoint: min(leastAncestor, min(lowpoint of DFS Children))
visitedInfo: enables algorithms to manage vertex visitation with more than
just a flag. For example, the planarity test flags visitation
as a step number that implicitly resets on each step, whereas
part of the planar drawing method signifies a first visitation
by storing the index of the first edge used to reach a vertex
pertinentEdge: Used by the planarity method; during Walkup, each vertex
that is directly adjacent via a back edge to the vertex v
currently being embedded will have the forward edge's index
stored in this field. During Walkdown, each vertex for which
this field is set will cause a back edge to be embedded.
Implicitly resets at each vertex step of the planarity method
pertinentRootsList: used by Walkup to store a list of child bicomp roots of
a vertex descendant of the current vertex that are pertinent
and must be merged by the Walkdown in order to embed the cycle
edges of the current vertex. Future pertinent child bicomp roots
are placed at the end of the list to ensure bicomps that are
only pertinent are processed first.
futurePertinentChild: indicates a DFS child with a lowpoint less than the
current vertex v. This member is initialized to the start of
the sortedDFSChildList and is advanced in a relaxed manner as
needed until one with a lowpoint less than v is found or until
there are no more children.
sortedDFSChildList: at the start of embedding, the list of DFS children of
this vertex is calculated in ascending order by DFI (sorted in
linear time). The list is used during Walkdown processing of
a vertex to process all of its children. It is also used in
future pertinence management when processing the ancestors of
the vertex. When a child C is merged into the same bicomp as
the vertex, it is removed from the list.
fwdArcList: at the start of embedding, the "back" edges from a vertex to
its DFS *descendants* (i.e. the forward arcs of the back edges)
are separated from the main adjacency list and placed in a
circular list until they are embedded. The list is sorted in
ascending DFI order of the descendants (in linear time).
This member indicates a node in that list.
*/
typedef struct
{
int parent, leastAncestor, lowpoint;
int visitedInfo;
int pertinentEdge,
pertinentRoots,
futurePertinentChild,
sortedDFSChildList,
fwdArcList;
} vertexInfo;
typedef vertexInfo * vertexInfoP;
#define gp_GetVertexVisitedInfo(theGraph, v) (theGraph->VI[v].visitedInfo)
#define gp_SetVertexVisitedInfo(theGraph, v, theVisitedInfo) (theGraph->VI[v].visitedInfo = theVisitedInfo)
#define gp_GetVertexParent(theGraph, v) (theGraph->VI[v].parent)
#define gp_SetVertexParent(theGraph, v, theParent) (theGraph->VI[v].parent = theParent)
#define gp_GetVertexLeastAncestor(theGraph, v) (theGraph->VI[v].leastAncestor)
#define gp_SetVertexLeastAncestor(theGraph, v, theLeastAncestor) (theGraph->VI[v].leastAncestor = theLeastAncestor)
#define gp_GetVertexLowpoint(theGraph, v) (theGraph->VI[v].lowpoint)
#define gp_SetVertexLowpoint(theGraph, v, theLowpoint) (theGraph->VI[v].lowpoint = theLowpoint)
#define gp_GetVertexPertinentEdge(theGraph, v) (theGraph->VI[v].pertinentEdge)
#define gp_SetVertexPertinentEdge(theGraph, v, e) (theGraph->VI[v].pertinentEdge = e)
#define gp_GetVertexPertinentRootsList(theGraph, v) (theGraph->VI[v].pertinentRoots)
#define gp_SetVertexPertinentRootsList(theGraph, v, pertinentRootsHead) (theGraph->VI[v].pertinentRoots = pertinentRootsHead)
#define gp_GetVertexFirstPertinentRoot(theGraph, v) gp_GetRootFromDFSChild(theGraph, theGraph->VI[v].pertinentRoots)
#define gp_GetVertexFirstPertinentRootChild(theGraph, v) (theGraph->VI[v].pertinentRoots)
#define gp_GetVertexLastPertinentRoot(theGraph, v) gp_GetRootFromDFSChild(theGraph, LCGetPrev(theGraph->BicompRootLists, theGraph->VI[v].pertinentRoots, NIL))
#define gp_GetVertexLastPertinentRootChild(theGraph, v) LCGetPrev(theGraph->BicompRootLists, theGraph->VI[v].pertinentRoots, NIL)
#define gp_DeleteVertexPertinentRoot(theGraph, v, R) \
gp_SetVertexPertinentRootsList(theGraph, v, \
LCDelete(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))
#define gp_PrependVertexPertinentRoot(theGraph, v, R) \
gp_SetVertexPertinentRootsList(theGraph, v, \
LCPrepend(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))
#define gp_AppendVertexPertinentRoot(theGraph, v, R) \
gp_SetVertexPertinentRootsList(theGraph, v, \
LCAppend(theGraph->BicompRootLists, gp_GetVertexPertinentRootsList(theGraph, v), gp_GetDFSChildFromRoot(theGraph, R)))
#define gp_GetVertexFuturePertinentChild(theGraph, v) (theGraph->VI[v].futurePertinentChild)
#define gp_SetVertexFuturePertinentChild(theGraph, v, theFuturePertinentChild) (theGraph->VI[v].futurePertinentChild = theFuturePertinentChild)
// Used to advance futurePertinentChild of w to the next separated DFS child with a lowpoint less than v
// Once futurePertinentChild advances past a child, no future planarity operation could make that child
// relevant to future pertinence
#define gp_UpdateVertexFuturePertinentChild(theGraph, w, v) \
while (gp_IsVertex(theGraph->VI[w].futurePertinentChild)) \
{ \
/* Skip children that 1) aren't future pertinent, 2) have been merged into the bicomp with w */ \
if (gp_GetVertexLowpoint(theGraph, theGraph->VI[w].futurePertinentChild) >= v || \
gp_IsNotSeparatedDFSChild(theGraph, theGraph->VI[w].futurePertinentChild)) \
{ \
theGraph->VI[w].futurePertinentChild = \
gp_GetVertexNextDFSChild(theGraph, w, gp_GetVertexFuturePertinentChild(theGraph, w)); \
} \
else break; \
}
#define gp_GetVertexSortedDFSChildList(theGraph, v) (theGraph->VI[v].sortedDFSChildList)
#define gp_SetVertexSortedDFSChildList(theGraph, v, theSortedDFSChildList) (theGraph->VI[v].sortedDFSChildList = theSortedDFSChildList)
#define gp_GetVertexNextDFSChild(theGraph, v, c) LCGetNext(theGraph->sortedDFSChildLists, gp_GetVertexSortedDFSChildList(theGraph, v), c)
#define gp_AppendDFSChild(theGraph, v, c) \
LCAppend(theGraph->sortedDFSChildLists, gp_GetVertexSortedDFSChildList(theGraph, v), c)
#define gp_GetVertexFwdArcList(theGraph, v) (theGraph->VI[v].fwdArcList)
#define gp_SetVertexFwdArcList(theGraph, v, theFwdArcList) (theGraph->VI[v].fwdArcList = theFwdArcList)
#define gp_CopyVertexInfo(dstGraph, dstI, srcGraph, srcI) (dstGraph->VI[dstI] = srcGraph->VI[srcI])
#define gp_SwapVertexInfo(dstGraph, dstPos, srcGraph, srcPos) \
{ \
vertexInfo tempVI = dstGraph->VI[dstPos]; \
dstGraph->VI[dstPos] = srcGraph->VI[srcPos]; \
srcGraph->VI[srcPos] = tempVI; \
}
/********************************************************************
Variables needed in embedding by Kuratowski subgraph isolator:
minorType: the type of planarity obstruction found.
v: the current vertex being processed
r: the root of the bicomp on which the Walkdown failed
x,y: stopping vertices on bicomp rooted by r
w: pertinent vertex on ext. face path below x and y
px, py: attachment points of x-y path,
z: Unused except in minors D and E (not needed in A, B, C).
ux,dx: endpoints of unembedded edge that helps connext x with
ancestor of v
uy,dy: endpoints of unembedded edge that helps connext y with
ancestor of v
dw: descendant endpoint in unembedded edge to v
uz,dz: endpoints of unembedded edge that helps connext z with
ancestor of v (for minors B and E, not A, C, D).
*/
typedef struct
{
int minorType;
int v, r, x, y, w, px, py, z;
int ux, dx, uy, dy, dw, uz, dz;
} isolatorContext;
typedef isolatorContext * isolatorContextP;
#define MINORTYPE_A 1
#define MINORTYPE_B 2
#define MINORTYPE_C 4
#define MINORTYPE_D 8
#define MINORTYPE_E 16
#define MINORTYPE_E1 32
#define MINORTYPE_E2 64
#define MINORTYPE_E3 128
#define MINORTYPE_E4 256
#define MINORTYPE_E5 512
#define MINORTYPE_E6 1024
#define MINORTYPE_E7 2048
/********************************************************************
Graph structure definition
V : Array of vertex records (allocated size N + NV)
VI: Array of additional vertexInfo structures (allocated size N)
N : Number of primary vertices (the "order" of the graph)
NV: Number of virtual vertices (currently always equal to N)
E : Array of edge records (edge records come in pairs and represent half edges, or arcs)
M: Number of edges (the "size" of the graph)
arcCapacity: the maximum number of edge records allowed in E (the size of E)
edgeHoles: free locations in E where edges have been deleted
theStack: Used by various graph routines needing a stack
internalFlags: Additional state information about the graph
embedFlags: controls type of embedding (e.g. planar)
IC: contains additional useful variables for Kuratowski subgraph isolation.
BicompRootLists: storage space for pertinent bicomp root lists that develop
during embedding
sortedDFSChildLists: storage for the sorted DFS child lists of each vertex
extFace: Array of (N + NV) external face short circuit records
extensions: a list of extension data structures
functions: a table of function pointers that can be overloaded to provide
extension behaviors to the graph
*/
typedef struct
{
vertexRecP V;
vertexInfoP VI;
int N, NV;
edgeRecP E;
int M, arcCapacity;
stackP edgeHoles;
stackP theStack;
int internalFlags, embedFlags;
isolatorContext IC;
listCollectionP BicompRootLists, sortedDFSChildLists;
extFaceLinkRecP extFace;
graphExtensionP extensions;
graphFunctionTable functions;
} baseGraphStructure;
typedef baseGraphStructure * graphP;
/* Flags for graph:
FLAGS_DFSNUMBERED is set if DFSNumber() has succeeded for the graph
FLAGS_SORTEDBYDFI records whether the graph is in original vertex
order or sorted by depth first index. Successive calls to
SortVertices() toggle this bit.
FLAGS_OBSTRUCTIONFOUND is set by gp_Embed() if an embedding obstruction
was isolated in the graph returned. It is cleared by gp_Embed()
if an obstruction was not found. The flag is used by
gp_TestEmbedResultIntegrity() to decide what integrity tests to run.
FLAGS_ZEROBASEDIO is typically set by gp_Read() to indicate that the
adjacency list representation began with index 0.
*/
#define FLAGS_DFSNUMBERED 1
#define FLAGS_SORTEDBYDFI 2
#define FLAGS_OBSTRUCTIONFOUND 4
#define FLAGS_ZEROBASEDIO 8
/********************************************************************
More link structure accessors/manipulators
********************************************************************/
// Definitions that enable getting the next or previous arc
// as if the adjacency list were circular, i.e. that the
// first arc and last arc were linked
#define gp_GetNextArcCircular(theGraph, e) \
(gp_IsArc(gp_GetNextArc(theGraph, e)) ? \
gp_GetNextArc(theGraph, e) : \
gp_GetFirstArc(theGraph, theGraph->E[gp_GetTwinArc(theGraph, e)].neighbor))
#define gp_GetPrevArcCircular(theGraph, e) \
(gp_IsArc(gp_GetPrevArc(theGraph, e)) ? \
gp_GetPrevArc(theGraph, e) : \
gp_GetLastArc(theGraph, theGraph->E[gp_GetTwinArc(theGraph, e)].neighbor))
// Definitions that make the cross-link binding between a vertex and an arc
// The old first or last arc should be bound to this arc by separate calls,
// e.g. see gp_AttachFirstArc() and gp_AttachLastArc()
#define gp_BindFirstArc(theGraph, v, arc) \
{ \
gp_SetPrevArc(theGraph, arc, NIL); \
gp_SetFirstArc(theGraph, v, arc); \
}
#define gp_BindLastArc(theGraph, v, arc) \
{ \
gp_SetNextArc(theGraph, arc, NIL); \
gp_SetLastArc(theGraph, v, arc); \
}
// Attaches an arc between the current binding between a vertex and its first arc
#define gp_AttachFirstArc(theGraph, v, arc) \
{ \
if (gp_IsArc(gp_GetFirstArc(theGraph, v))) \
{ \
gp_SetNextArc(theGraph, arc, gp_GetFirstArc(theGraph, v)); \
gp_SetPrevArc(theGraph, gp_GetFirstArc(theGraph, v), arc); \
} \
else gp_BindLastArc(theGraph, v, arc); \
gp_BindFirstArc(theGraph, v, arc); \
}
// Attaches an arc between the current binding betwen a vertex and its last arc
#define gp_AttachLastArc(theGraph, v, arc) \
{ \
if (gp_IsArc(gp_GetLastArc(theGraph, v))) \
{ \
gp_SetPrevArc(theGraph, arc, gp_GetLastArc(theGraph, v)); \
gp_SetNextArc(theGraph, gp_GetLastArc(theGraph, v), arc); \
} \
else gp_BindFirstArc(theGraph, v, arc); \
gp_BindLastArc(theGraph, v, arc); \
}
// Moves an arc that is in the adjacency list of v to the start of the adjacency list
#define gp_MoveArcToFirst(theGraph, v, arc) \
if (arc != gp_GetFirstArc(theGraph, v)) \
{ \
/* If the arc is last in the adjacency list of uparent,
then we delete it by adjacency list end management */ \
if (arc == gp_GetLastArc(theGraph, v)) \
{ \
gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), NIL); \
gp_SetLastArc(theGraph, v, gp_GetPrevArc(theGraph, arc)); \
} \
/* Otherwise, we delete the arc from the middle of the list */ \
else \
{ \
gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), gp_GetNextArc(theGraph, arc)); \
gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), gp_GetPrevArc(theGraph, arc)); \
} \
\
/* Now add arc e as the new first arc of uparent.
Note that the adjacency list is non-empty at this time */ \
gp_SetNextArc(theGraph, arc, gp_GetFirstArc(theGraph, v)); \
gp_SetPrevArc(theGraph, gp_GetFirstArc(theGraph, v), arc); \
gp_BindFirstArc(theGraph, v, arc); \
}
// Moves an arc that is in the adjacency list of v to the end of the adjacency list
#define gp_MoveArcToLast(theGraph, v, arc) \
if (arc != gp_GetLastArc(theGraph, v)) \
{ \
/* If the arc is first in the adjacency list of vertex v,
then we delete it by adjacency list end management */ \
if (arc == gp_GetFirstArc(theGraph, v)) \
{ \
gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), NIL); \
gp_SetFirstArc(theGraph, v, gp_GetNextArc(theGraph, arc)); \
} \
/* Otherwise, we delete the arc from the middle of the list */ \
else \
{ \
gp_SetNextArc(theGraph, gp_GetPrevArc(theGraph, arc), gp_GetNextArc(theGraph, arc)); \
gp_SetPrevArc(theGraph, gp_GetNextArc(theGraph, arc), gp_GetPrevArc(theGraph, arc)); \
} \
\
/* Now add the arc as the new last arc of v.
Note that the adjacency list is non-empty at this time */ \
gp_SetPrevArc(theGraph, arc, gp_GetLastArc(theGraph, v)); \
gp_SetNextArc(theGraph, gp_GetLastArc(theGraph, v), arc); \
gp_BindLastArc(theGraph, v, arc); \
}
// Methods for attaching an arc into the adjacency list or detaching an arc from it.
// The terms AddArc, InsertArc and DeleteArc are not used because the arcs are not
// inserted or added to or deleted from storage (only whole edges are inserted or deleted)
void gp_AttachArc(graphP theGraph, int v, int e, int link, int newArc);
void gp_DetachArc(graphP theGraph, int arc);
/********************************************************************
PERTINENT()
A vertex is pertinent in a partially processed graph if there is an
unprocessed back edge between the vertex v whose edges are currently
being processed and either the vertex or a DFS descendant D of the
vertex not in the same bicomp as the vertex.
The vertex is either directly adjacent to v by an unembedded back edge
or there is an unembedded back edge (v, D) and the vertex is a cut
vertex in the partially processed graph along the DFS tree path from
D to v.
Pertinence is a dynamic property that can change for a vertex after
each edge addition. In other words, a vertex can become non-pertinent
during step v as more back edges to v are embedded.
********************************************************************/
#define PERTINENT(theGraph, theVertex) \
(gp_IsArc(gp_GetVertexPertinentEdge(theGraph, theVertex)) || \
gp_IsVertex(gp_GetVertexPertinentRootsList(theGraph, theVertex)))
#define NOTPERTINENT(theGraph, theVertex) \
(gp_IsNotArc(gp_GetVertexPertinentEdge(theGraph, theVertex)) && \
gp_IsNotVertex(gp_GetVertexPertinentRootsList(theGraph, theVertex)))
/********************************************************************
FUTUREPERTINENT()
A vertex is future-pertinent in a partially processed graph if
there is an unprocessed back edge between a DFS ancestor A of the
vertex v whose edges are currently being processed and either
theVertex or a DFS descendant D of theVertex not in the same bicomp
as theVertex.
Either theVertex is directly adjacent to A by an unembedded back edge
or there is an unembedded back edge (A, D) and theVertex is a cut
vertex in the partially processed graph along the DFS tree path from
D to A.
If no more edges are added to the partially processed graph prior to
processing the edges of A, then the vertex would be pertinent.
The addition of edges to the partially processed graph can alter
both the pertinence and future pertinence of a vertex. For example,
if the vertex is pertinent due to an unprocessed back edge (v, D1) and
future pertinent due to an unprocessed back edge (A, D2), then the
vertex may lose both its pertinence and future pertinence when edge
(v, D1) is added if D2 is in the same subtree as D1.
Generally, pertinence and future pertinence are dynamic properties
that can change for a vertex after each edge addition.
Note that gp_UpdateVertexFuturePertinentChild() must be called before
this macro. Since it is a statement and not a void expression, the
desired commented out version does not compile (except with special
compiler extensions not assumed by this code).
********************************************************************/
#define FUTUREPERTINENT(theGraph, theVertex, v) \
( theGraph->VI[theVertex].leastAncestor < v || \
(gp_IsVertex(theGraph->VI[theVertex].futurePertinentChild) && \
theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint < v) )
#define NOTFUTUREPERTINENT(theGraph, theVertex, v) \
( theGraph->VI[theVertex].leastAncestor >= v && \
(gp_IsNotVertex(theGraph->VI[theVertex].futurePertinentChild) || \
theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint >= v) )
// This is the definition that would be preferrable if a while loop could be a void expression
//#define FUTUREPERTINENT(theGraph, theVertex, v)
// ( theGraph->VI[theVertex].leastAncestor < v ||
// ((gp_UpdateVertexFuturePertinentChild(theGraph, theVertex, v),
// gp_IsArc(theGraph->VI[theVertex].futurePertinentChild)) &&
// theGraph->VI[theGraph->VI[theVertex].futurePertinentChild].lowpoint < v) )
/********************************************************************
INACTIVE()
For planarity algorithms, a vertex is inactive if it is neither pertinent
nor future pertinent.
********************************************************************/
#define INACTIVE(theGraph, theVertex, v) \
( NOTPERTINENT(theGraph, theVertex) && \
NOTFUTUREPERTINENT(theGraph, theVertex, v))
#ifdef __cplusplus
}
#endif
#endif
|