This file is indexed.

/usr/include/palabos/boundaryCondition/generalizedIncompressibleBoundaryTemplates.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * A collection of dynamics classes (e.g. BGK) with which a Cell object
 * can be instantiated -- generic implementation.
 */
#ifndef GENERALIZED_INCOMPRESSIBLE_BOUNDARY_TEMPLATES_H
#define GENERALIZED_INCOMPRESSIBLE_BOUNDARY_TEMPLATES_H

#include "generalizedBoundaryDynamics.h"
#include "core/cell.h"
#include "core/dynamicsIdentifiers.h"
#include "latticeBoltzmann/indexTemplates.h"
#include "latticeBoltzmann/hermitePolynomialsTemplates.h"
#include <Eigen/Core>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/Cholesky>
#include <Eigen/SVD>
#include <Eigen/Dense>


namespace plb {

template<typename T, template<typename U> class Descriptor>
struct generalizedIncomprBoundaryTemplates {
    
    static T equilibrium_ma2_over_rho(plint iPop, const Array<T,Descriptor<T>::d> &u, T uSqr) {
        T c_u = Descriptor<T>::c[iPop][0]*u[0];
        for (int iD=1; iD < Descriptor<T>::d; ++iD) {
            c_u += Descriptor<T>::c[iPop][iD]*u[iD];
        }
        return Descriptor<T>::t[iPop] * ( 
            (T)1 + Descriptor<T>::invCs2 * c_u +
            Descriptor<T>::invCs2/(T)2 * (
            Descriptor<T>::invCs2 * c_u*c_u - uSqr ) );
    }
    
    // f = w_i*rho*g_i+H2/(2*cs^4):PiNeq (rho and PiNeq unknowns)
    static void f_ma2_linear(plint iPop, const Array<T,Descriptor<T>::d> &u, 
                                     T uSqr, Eigen::RowVectorXd &a) {
        T eqOverRho = equilibrium_ma2_over_rho(iPop,u,uSqr);
        a[0] = eqOverRho;
        
        T factor = 0.5*Descriptor<T>::t[iPop]*Descriptor<T>::invCs2*Descriptor<T>::invCs2;
        Array<T,SymmetricTensor<T,Descriptor>::n> H2 = HermiteTemplate<T,Descriptor>::contractedOrder2(iPop);
        
        for (plint iPi=1; iPi<=SymmetricTensor<T,Descriptor>::n; ++iPi) a[iPi] = H2[iPi-1]*factor;
    }
    
    static void f_ma2_linear(plint iPop, const Array<T,Descriptor<T>::d> &u, T uSqr, Eigen::RowVectorXd &a,
                             T omega) {
        T eqOverRho = equilibrium_ma2_over_rho(iPop,u,uSqr);
        a(0) = eqOverRho;
        
        T factor = 0.5*Descriptor<T>::t[iPop]*Descriptor<T>::invCs2*Descriptor<T>::invCs2 * ((T)1-omega);
        Array<T,SymmetricTensor<T,Descriptor>::n> H2 = HermiteTemplate<T,Descriptor>::contractedOrder2(iPop);
        
        for (plint iPi=1; iPi<=SymmetricTensor<T,Descriptor>::n; ++iPi) a(iPi) = H2[iPi-1]*factor;
    }
        
    static void f_to_A_ma2_contrib(const std::vector<plint> kInd, const Array<T,Descriptor<T>::d> &u, 
                                     T uSqr, Eigen::MatrixXd &A) {
        for (pluint fInd = 0; fInd < kInd.size(); ++fInd) {
            plint iPop = kInd[fInd];
            Eigen::RowVectorXd lineA = Eigen::RowVectorXd::Zero(A.cols());
            generalizedIncomprBoundaryTemplates<T,Descriptor>::
                f_ma2_linear(iPop, u, uSqr, lineA);
            A.row(fInd) = lineA;
        }
    }
    
    static void f_to_b_contrib(Cell<T,Descriptor> &cell, const std::vector<plint> kInd, Eigen::VectorXd &b) {
        for (pluint fInd = 0; fInd < kInd.size(); ++fInd) {
            plint iPop = kInd[fInd];
            b[fInd] = fullF<T,Descriptor>(cell[iPop], iPop);
        }
    }
    
    static void from_macro_to_rho_j_pineq(const std::vector<T> &macro, T &rho, Array<T,Descriptor<T>::d> &j, 
                                          Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq) {
        rho = macro[0];
        for (plint iD = 0; iD < Descriptor<T>::d; ++iD) j[iD] = rho * (macro[1+iD]);
        for (plint iPi = 0; iPi < SymmetricTensor<T,Descriptor>::n; ++iPi) PiNeq[iPi] = macro[1+Descriptor<T>::d+iPi];
    }
    
    // generic tranformation methods
    static void fromRhoAndPiNeqToX(T rho, const Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq, Eigen::VectorXd &x) {
        x(0) = rho;
        for (plint iPi = 0; iPi < SymmetricTensor<T,Descriptor>::n; ++iPi) x(iPi+1) = PiNeq[iPi];
    }
    
    static void fromXtoRhoAndPiNeq(const Eigen::VectorXd &x, T &rho, Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq) {
        rho = x(0);
        for (plint iPi = 0; iPi < SymmetricTensor<T,Descriptor>::n; ++iPi) PiNeq[iPi] = x(iPi+1);
    }
    
    static void fromUandPiNeqToX(const Array<T,Descriptor<T>::d> &u, 
                                 const Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq, Eigen::VectorXd &x, plint dir) {
        x(0) = u[dir];
        for (plint iPi = 0; iPi < SymmetricTensor<T,Descriptor>::n; ++iPi) x(iPi+1) = PiNeq[iPi];
    }
    
    static void fromXtoUandPiNeq(const Eigen::VectorXd &x, Array<T,Descriptor<T>::d> &u, 
                                 Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq,plint dir) {
        u[dir] = x(0);
        for (plint iPi = 0; iPi < SymmetricTensor<T,Descriptor>::n; ++iPi) PiNeq[iPi] = x(iPi+1);
    }
    
    // creation of the over-determined (usually) linear system
//     static void createLinearSystem(const Cell<T,Descriptor>& cell, const Array<T,Descriptor<T>::d> &u,
//                                    const std::vector<plint> &missingIndices,
//                                    const std::vector<plint> &knownIndices,
//                                    Eigen::MatrixXd &A,Eigen::VectorXd &b) {
//         
//         T uSqr = VectorTemplate<T,Descriptor>::normSqr(u);
//         
//         plint systSizeX = SymmetricTensor<T,Descriptor>::n+1;
//         plint systSizeY = knownIndices.size()+1;
//         
//         // matrix of the system Ax=b
//         A = Eigen::MatrixXd::Zero(systSizeY,systSizeX);
//         // rhs of the equation Ax=b
//         b = Eigen::VectorXd::Zero(systSizeY);
//         
//         // f^k = A * x
//         // A = g, 1/(2c_s^4) H^2
//         // with g being feq/rho and H^2 the second order Hermite polynomial
//         for (pluint fInd = 0; fInd < knownIndices.size(); ++fInd) {
//             plint iPop = knownIndices[fInd];
//             Eigen::RowVectorXd lineA = Eigen::RowVectorXd::Zero(systSizeX);
//             computeMatrixRow(iPop, u, uSqr, lineA);
//             A.row(fInd) = lineA;
//         }
//         
//         T rhoTmp = T();
//         for (pluint kInd = 0; kInd < knownIndices.size(); ++kInd) {
//             plint iPop = knownIndices[kInd];
//             rhoTmp += fullF<T,Descriptor>(cell[iPop], iPop);
//             b(kInd) = fullF<T,Descriptor>(cell[iPop], iPop);
//         }
//         // rhoTtmp = sum_i->known f_i.
//         b(knownIndices.size()) = rhoTmp;
//         
//         // first row of the A matrix. imposing sum_i f_i = rho.
//         Eigen::RowVectorXd e0 = Eigen::RowVectorXd::Zero(systSizeX); 
//         e0(0) = 1.0;
//         
//         Eigen::RowVectorXd sumA = Eigen::RowVectorXd::Zero(systSizeX);
//         for (pluint fInd = 0; fInd < missingIndices.size(); ++fInd) {
//             plint iPop = missingIndices[fInd];
//             Eigen::RowVectorXd lineA = Eigen::RowVectorXd::Zero(systSizeX);
//             computeMatrixRow(iPop, u, uSqr, lineA);
//             for (plint iVec = 0; iVec < systSizeX; ++iVec) sumA(iVec) += lineA(iVec);
//         }
//         
//         A.row(knownIndices.size()) = e0-sumA;
//         
//     }
// 
//     static void solveLinearSystemEigen(const Cell<T,Descriptor>& cell, 
//                                       const Array<T,Descriptor<T>::d> &u,
//                                       const std::vector<plint> &missingIndices,
//                                       const std::vector<plint> &knownIndices,
//                                       T &rho, 
//                                       Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq) {
//         Eigen::MatrixXd A;
//         Eigen::VectorXd b;
//         
//         createLinearSystem(cell, u, missingIndices, knownIndices, A, b);
//         
//         Eigen::VectorXd x;
//         
//         Eigen::MatrixXd AT = A.transpose();
//         A = AT * A;
//         b = AT * b;
//         
//         #ifdef PLB_DEBUG
//         bool solutionExists = A.lu().solve(b,&x);   // using a LU factorization
//         PLB_ASSERT(solutionExists);
//         #else
//         A.lu().solve(b,&x);
//         #endif
// 
//         fromXtoRhoAndPiNeq(x,rho,PiNeq);
//     }
    
    // ========= Methods used for the density BCs ============== //
    static void compute_f_diff_u_dir_and_PiNeq(plint iPop, T rho, const Array<T,Descriptor<T>::d> &u, 
                                               Eigen::RowVectorXd &df, plint dir) {
        T tcs2 = Descriptor<T>::invCs2* Descriptor<T>::t[iPop];
        T factor = 0.5 * tcs2 * Descriptor<T>::invCs2;
        Array<T,SymmetricTensor<T,Descriptor>::n> H2 = HermiteTemplate<T,Descriptor>::contractedOrder2(iPop);
        
        T diffFeqUmissing = T();
        plint iPi = 0;
        for (plint iA = 0; iA < Descriptor<T>::d; ++iA) {
            for (plint iB = iA; iB < Descriptor<T>::d; ++iB) {
                if (iA == dir || iB == dir) {
                    if (iA == iB) {
                        diffFeqUmissing += (T)2*H2[iPi]*u[dir];
                    }
                    else if (iA != dir) {
                        diffFeqUmissing += H2[iPi]*u[iA];
                    }
                    else if (iB != dir) {
                        diffFeqUmissing += H2[iPi]*u[iB];
                    }
                }
                df(iPi+1) = factor*H2[iPi];
                ++iPi;
            }
        }
        diffFeqUmissing *= factor;
        diffFeqUmissing += Descriptor<T>::c[iPop][dir]*tcs2;
        diffFeqUmissing *= rho;
        
        df(0) = diffFeqUmissing;
    }
    
    static void computeDiffF(plint iPop, T rho, const Array<T,Descriptor<T>::d> &u, plint dir, Eigen::RowVectorXd &df) {
        T tcs2 = Descriptor<T>::invCs2* Descriptor<T>::t[iPop];
        T factor = 0.5 * tcs2 * Descriptor<T>::invCs2;
        Array<T,SymmetricTensor<T,Descriptor>::n> H2 = HermiteTemplate<T,Descriptor>::contractedOrder2(iPop);
        
        T diffFeqUmissing = T();
        plint iPi = 0;
        for (plint iA = 0; iA < Descriptor<T>::d; ++iA) {
            for (plint iB = iA; iB < Descriptor<T>::d; ++iB) {
                if (iA == dir || iB == dir) {
                    if (iA == iB) {
                        diffFeqUmissing += (T)2*H2[iPi]*u[dir];
                    }
                    else if (iA != dir) {
                        diffFeqUmissing += H2[iPi]*u[iA];
                    }
                    else if (iB != dir) {
                        diffFeqUmissing += H2[iPi]*u[iB];
                    }
                }
                df(iPi+1) = factor*H2[iPi];
                ++iPi;
            }
        }
        diffFeqUmissing *= factor;
        diffFeqUmissing += Descriptor<T>::c[iPop][dir]*tcs2;
        diffFeqUmissing *= rho;
        
        df(0) = diffFeqUmissing;
    }
    
    static void computeJacobian(T rho,
                                const Array<T,Descriptor<T>::d> &u,
                                const Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq,
                                const plint dir, // direction of the unknown velocity
                                const std::vector<plint> &knownIndices,
                                Eigen::MatrixXd &Jac) {
        plint systSizeX = SymmetricTensor<T,Descriptor>::n+1;
        
        Eigen::RowVectorXd df = Eigen::RowVectorXd::Zero(systSizeX);
        for (pluint iPop = 0; iPop < knownIndices.size(); ++iPop) {
            computeDiffF(knownIndices[iPop], rho, u, dir, df);
            Jac.row(iPop) = df;
        }
    }
    
    static void computeNonLinearFunction(const Cell<T,Descriptor>& cell, 
                                         T rho,
                                         const Array<T,Descriptor<T>::d> &u,
                                         const T uSqr,
                                         const Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq,
                                         const plint dir, // direction of the unknown velocity
                                         const std::vector<plint> &knownIndices,
                                         Eigen::VectorXd &f) {
        T rhoBar = Descriptor<T>::rhoBar(rho);
        T invRho = Descriptor<T>::invRho(rhoBar);
        Array<T,Descriptor<T>::d> j = rho * u;
        T jSqr = rho*rho*uSqr;
        for (pluint iPop = 0; iPop < knownIndices.size(); ++iPop) {
            f(iPop) = cell[knownIndices[iPop]] - (
                dynamicsTemplates<T,Descriptor>::bgk_ma2_equilibrium(knownIndices[iPop], rhoBar, invRho, j, jSqr) +
                offEquilibriumTemplates<T,Descriptor>::fromPiToFneq(knownIndices[iPop],PiNeq) );
        }
    }
    
    static bool converge(Eigen::VectorXd &x,
                         Eigen::VectorXd &dx,
                         T epsilon)
    {
        for (plint iPi = 0; iPi < x.rows(); ++iPi) {
            T res = (std::fabs(x[iPi]) > 1.0e-14 ? std::fabs(dx(iPi)/x(iPi)) : std::fabs(x(iPi)));
            
            if (res > epsilon) return false;
        }
        return true;
    }
    
    static void iterativelySolveSystem(const Cell<T,Descriptor>& cell, 
                                       T rho,
                                       Array<T,Descriptor<T>::d> &u,
                                       Array<T,SymmetricTensor<T,Descriptor>::n> &PiNeq,
                                       const int dir, // direction of the unknown velocity
                                       const std::vector<plint> &knownIndices,
                                       T epsilon) {
        // u and PiNeq contain the initial guess for the solution of the system
        plint maxT = 10000;
        
        plint systSizeX = SymmetricTensor<T,Descriptor>::n+1;
        plint systSizeY = knownIndices.size();
        
        Eigen::VectorXd f  = Eigen::VectorXd::Zero(systSizeY); // stores the non-linear function
        Eigen::VectorXd x  = Eigen::VectorXd::Zero(systSizeX); // stores the variables (u[dir] and PiNeq)
        Eigen::VectorXd dx = Eigen::VectorXd::Zero(systSizeX); // contains delta_u[dir], delta_PiNeq (the increments towards the solution)
        
        fromUandPiNeqToX(u,PiNeq,x,dir);
        Eigen::MatrixXd Jac  = Eigen::MatrixXd::Zero(systSizeY,systSizeX);
        Eigen::MatrixXd JacT = Jac.transpose();
        for (plint iT = 0; iT < maxT; ++iT) {
            T uSqr = VectorTemplate<T,Descriptor>::normSqr(u);
            computeNonLinearFunction(cell,rho,u,uSqr,PiNeq,dir, knownIndices,f);
//             std::cout << iT << " " << f << std::endl << std::endl;
            computeJacobian(rho, u, PiNeq, dir, knownIndices, Jac);
            JacT = Jac.transpose();
            
            Eigen::MatrixXd JacSqr = JacT * Jac;
            Eigen::VectorXd JacTf = JacT * f;
            
            #ifdef PLB_DEBUG
//             bool solutionExists = JacSqr.lu().solve(JacTf,&dx);   // using a LU factorization
//             PLB_ASSERT(solutionExists);
            dx = JacSqr.fullPivLu().solve(JacTf);
            T relError = (JacSqr*dx - JacTf).norm() / JacTf.norm();
            PLB_ASSERT(relError < 1.0e-12);
            #else
            dx = JacSqr.fullPivLu().solve(JacTf);
//             JacSqr.lu().solve(JacTf,&dx);
//             dx = JacSqr.fullPivLu().solve(JacTf);
            #endif
            
            T stepMult = (T)1; // step size (step mult can only be <= 1 (usually = 1).
            x += stepMult*dx;  // increment solution
            fromXtoUandPiNeq(x,u,PiNeq,dir);
            if (converge(x,dx,epsilon)) {
//                 pcout << "Converged after " << iT << " iterations." << std::endl;
//                 std::cout << x << std::endl << std::endl;
                break;
            }
        }
//         pcout << "NEVER CONVERGED!!!." << std::endl;
    }

};  // struct generalizedIncomprBoundaryTemplates

}  // namespace plb

#endif  // GENERALIZED_BOUNDARY_DYNAMICS_HH