This file is indexed.

/usr/include/purify/utilities.h is in libpurify-dev 2.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#ifndef PURIFY_UTILITIES_H
#define PURIFY_UTILITIES_H

#include "purify/config.h"
#include <fstream>
#include <iostream>
#include <random>
#include <stdio.h>
#include <string>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <sys/stat.h>
#include "purify/FFTOperator.h"
#include "purify/types.h"

namespace purify {

namespace utilities {
struct vis_params {
  Vector<t_real> u; // u coordinates
  Vector<t_real> v; // v coordinates
  Vector<t_real> w;
  Vector<t_complex> vis; // complex visiblities
  Vector<t_complex> vis1;
  Vector<t_complex> vis2;
  Vector<t_complex> vis3;
  Vector<t_complex> weights; // weights for visibilities
  std::string units = "lambda";
  t_real ra = 0.;  // decimal degrees
  t_real dec = 0.; // decimal degrees
  t_real average_frequency = 0.;
};
struct rm_params {
  Vector<t_real> frequency;              // u coordinates
  Vector<t_complex> linear_polarisation; // complex linear polarisation
  Vector<t_complex> weights;             // weights for visibilities
  std::string units = "MHz";
};

//! Generates a random visibility coverage
utilities::vis_params
random_sample_density(const t_int &vis_num, const t_real &mean, const t_real &standard_deviation);
//! Reads in visibility file
utilities::vis_params read_visibility(const std::string &vis_name, const bool w_term = false);
//! Writes visibilities to txt
void write_visibility(const utilities::vis_params &uv_vis, const std::string &file_name,
                      const bool w_term = false);
//! Scales visibilities to a given pixel size in arcseconds
utilities::vis_params
set_cell_size(const utilities::vis_params &uv_vis, t_real cell_size_u = 0, t_real cell_size_v = 0);
//! scales the visibilities to units of pixels
utilities::vis_params
uv_scale(const utilities::vis_params &uv_vis, const t_int &ftsizeu, const t_int &ftsizev);
//! Puts in conjugate visibilities
utilities::vis_params uv_symmetry(const utilities::vis_params &uv_vis);
//! Converts from subscript to index for matrix.
t_int sub2ind(const t_int &row, const t_int &col, const t_int &rows, const t_int &cols);
//! Converts from index to subscript for matrix.
Vector<t_int> ind2sub(const t_int &sub, const t_int &cols, const t_int &rows);
//! Mod function modified to wrap circularly for negative numbers
t_real mod(const t_real &x, const t_real &y);
//! Calculate mean of vector
template <class K> typename K::Scalar mean(const K x) {
  // Calculate mean of vector x
  return x.array().mean();
};
//! Calculate variance of vector
template <class K> t_real variance(const K x) {
  // calculate variance of vector x
  auto q = (x.array() - x.array().mean()).matrix();
  t_real var = std::real((q.adjoint() * q)(0) / static_cast<t_real>(q.size() - 1));
  return var;
};
//! Calculates the standard deviation of a vector
template <class K> t_real standard_deviation(const K x) {
  // calculate standard deviation of vector x
  return std::sqrt(variance(x));
};
//! Calculates the convolution between two images
Image<t_complex> convolution_operator(const Image<t_complex> &a, const Image<t_complex> &b);
//! A vector that whiten's the visibilities given the weights.
utilities::vis_params whiten_vis(const utilities::vis_params &uv_vis);
//! A function that calculates the l2 ball radius for sopt
t_real calculate_l2_radius(const Vector<t_complex> &y, const t_real &sigma = 0,
                           const t_real &n_sigma = 2., const std::string distirbution = "chi");
//! Converts SNR to RMS noise
t_real SNR_to_standard_deviation(const Vector<t_complex> &y0, const t_real &SNR = 30.);
//! Add guassian noise to vector
Vector<t_complex>
add_noise(const Vector<t_complex> &y, const t_complex &mean, const t_real &standard_deviation);
//! Test to see if file exists
bool file_exists(const std::string &name);
//! Method to fit Gaussian to PSF
Vector<t_real> fit_fwhm(const Image<t_real> &psf, const t_int &size = 3);
//! Return median of real vector
t_real median(const Vector<t_real> &input);
//! Calculate the dynamic range between the model and residuals
t_real dynamic_range(const Image<t_complex> &model, const Image<t_complex> &residuals,
                     const t_real &operator_norm = 1);
//! Calculate weightings
Array<t_complex> init_weights(const Vector<t_real> &u, const Vector<t_real> &v,
                              const Vector<t_complex> &weights, const t_real &oversample_factor,
                              const std::string &weighting_type, const t_real &R,
                              const t_int &ftsizeu, const t_int &ftsizev);
//! Parallel multiplication with a sparse matrix and vector
Vector<t_complex> sparse_multiply_matrix(const Sparse<t_complex> &M, const Vector<t_complex> &x);
//! Reads a diagnostic file and updates parameters
std::tuple<t_int, t_real> checkpoint_log(const std::string &diagnostic);
//! Multiply images coefficient-wise using openmp
template <class K, class L> Image<t_complex> parallel_multiply_image(const K &A, const L &B) {
  const t_int rows = A.rows();
  const t_int cols = A.cols();
  Image<t_complex> C = Matrix<t_complex>::Zero(rows, cols);

#pragma omp simd collapse(2)
  for(t_int i = 0; i < cols; ++i)
    for(t_int j = 0; j < rows; ++j)
      C(j, i) = A(j, i) * B(j, i);
  return C;
};
//! zero pads ft grid for image up sampling and downsampling
Matrix<t_complex> re_sample_ft_grid(const Matrix<t_complex> &input, const t_real &re_sample_factor);
//! resamples image size
Matrix<t_complex> re_sample_image(const Matrix<t_complex> &input, const t_real &re_sample_ratio);
}
}

#endif