This file is indexed.

/usr/include/ql/pricingengines/blackformula.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2003, 2004, 2005, 2006, 2008 Ferdinando Ametrano
 Copyright (C) 2006 Mark Joshi
 Copyright (C) 2006 StatPro Italia srl
 Copyright (C) 2007 Cristina Duminuco
 Copyright (C) 2007 Chiara Fornarola
 Copyright (C) 2013 Gary Kennedy
 Copyright (C) 2015 Peter Caspers
 Copyright (C) 2017 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file blackformula.hpp
    \brief Black formula
*/

#ifndef quantlib_blackformula_hpp
#define quantlib_blackformula_hpp

#include <ql/option.hpp>
#include <ql/instruments/payoffs.hpp>

namespace QuantLib {

    /*! Black 1976 formula
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormula(Option::Type optionType,
                      Real strike,
                      Real forward,
                      Real stdDev,
                      Real discount = 1.0,
                      Real displacement = 0.0);

    /*! Black 1976 formula
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormula(const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                      Real forward,
                      Real stdDev,
                      Real discount = 1.0,
                      Real displacement = 0.0);


    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated using Brenner and Subrahmanyan (1988) and Feinstein
        (1988) approximation for at-the-money forward option, with the
        extended moneyness approximation by Corrado and Miller (1996)
    */
    Real blackFormulaImpliedStdDevApproximation(Option::Type optionType,
                                                Real strike,
                                                Real forward,
                                                Real blackPrice,
                                                Real discount = 1.0,
                                                Real displacement = 0.0);

    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated using Brenner and Subrahmanyan (1988) and Feinstein
        (1988) approximation for at-the-money forward option, with the
        extended moneyness approximation by Corrado and Miller (1996)
    */
    Real blackFormulaImpliedStdDevApproximation(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real blackPrice,
                        Real discount = 1.0,
                        Real displacement = 0.0);

    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated following "An improved approach to computing
        implied volatility", Chambers, Nawalkha, The Financial Review,
        2001, 89-100. The atm option price must be known to use this
        method.
    */
    Real blackFormulaImpliedStdDevChambers(Option::Type optionType,
                                           Real strike,
                                           Real forward,
                                           Real blackPrice,
                                           Real blackAtmPrice,
                                           Real discount = 1.0,
                                           Real displacement = 0.0);

    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated following "An improved approach to computing
        implied volatility", Chambers, Nawalkha, The Financial Review,
        2001, 89-100. The atm option price must be known to use this
        method.
    */
    Real blackFormulaImpliedStdDevChambers(
        const boost::shared_ptr<PlainVanillaPayoff> &payoff,
        Real forward,
        Real blackPrice,
        Real blackAtmPrice,
        Real discount = 1.0,
        Real displacement = 0.0);

    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated using

        "An Explicit Implicit Volatility Formula"
        R. Radoicic, D. Stefanica,
        https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2908494

        "Tighter Bounds for Implied Volatility",
        J. Gatheral, I. Matic, R. Radoicic, D. Stefanica
        https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2922742
    */
    Real blackFormulaImpliedStdDevApproximationRS(
        Option::Type optionType,
        Real strike,
        Real forward,
        Real blackPrice,
        Real discount = 1.0,
        Real displacement = 0.0);

    Real blackFormulaImpliedStdDevApproximationRS(
        const boost::shared_ptr<PlainVanillaPayoff> &payoff,
        Real forward,
        Real blackPrice,
        Real discount = 1.0,
        Real displacement = 0.0);


    /*! Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaImpliedStdDev(Option::Type optionType,
                                   Real strike,
                                   Real forward,
                                   Real blackPrice,
                                   Real discount = 1.0,
                                   Real displacement = 0.0,
                                   Real guess = Null<Real>(),
                                   Real accuracy = 1.0e-6,
                                   Natural maxIterations = 100);

    /*! Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaImpliedStdDev(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real blackPrice,
                        Real discount = 1.0,
                        Real displacement = 0.0,
                        Real guess = Null<Real>(),
                        Real accuracy = 1.0e-6,
                        Natural maxIterations = 100);

    /*! Black 1976 implied standard deviation,
         i.e. volatility*sqrt(timeToMaturity)

        "An Adaptive Successive Over-relaxation Method for Computing the
        Black-Scholes Implied Volatility"
        M. Li, http://mpra.ub.uni-muenchen.de/6867/


        Starting point of the iteration is calculated based on

        "An Explicit Implicit Volatility Formula"
        R. Radoicic, D. Stefanica,
        https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2908494
    */
    Real blackFormulaImpliedStdDevLiRS(
        Option::Type optionType,
        Real strike,
        Real forward,
        Real blackPrice,
        Real discount = 1.0,
        Real displacement = 0.0,
        Real guess = Null<Real>(),
        Real omega = 1.0,
        Real accuracy = 1.0e-6,
        Natural maxIterations = 100);

    Real blackFormulaImpliedStdDevLiRS(
        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
        Real forward,
        Real blackPrice,
        Real discount = 1.0,
        Real displacement = 0.0,
        Real guess = Null<Real>(),
        Real omega = 1.0,
        Real accuracy = 1.0e-6,
        Natural maxIterations = 100);

    /*! Black 1976 probability of being in the money (in the bond martingale
        measure), i.e. N(d2).
        It is a risk-neutral probability, not the real world one.
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaCashItmProbability(Option::Type optionType,
                                        Real strike,
                                        Real forward,
                                        Real stdDev,
                                        Real displacement = 0.0);

    /*! Black 1976 probability of being in the money (in the bond martingale
        measure), i.e. N(d2).
        It is a risk-neutral probability, not the real world one.
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaCashItmProbability(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real displacement = 0.0);

    /*! Black 1976 formula for standard deviation derivative
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
                 If T is the time to maturity Black vega would be
                 blackStdDevDerivative(strike, forward, stdDev)*sqrt(T)
    */
    Real blackFormulaStdDevDerivative(Real strike,
                                      Real forward,
                                      Real stdDev,
                                      Real discount = 1.0,
                                      Real displacement = 0.0);

     /*! Black 1976 formula for  derivative with respect to implied vol, this
         is basically the vega, but if you want 1% change multiply by 1%
    */
    Real blackFormulaVolDerivative(Real strike,
                                   Real forward,
                                   Real stdDev,
                                   Real expiry,
                                   Real discount = 1.0,
                                   Real displacement = 0.0);


    /*! Black 1976 formula for standard deviation derivative
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
                 If T is the time to maturity Black vega would be
                 blackStdDevDerivative(strike, forward, stdDev)*sqrt(T)
    */
    Real blackFormulaStdDevDerivative(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real discount = 1.0,
                        Real displacement = 0.0);

    /*! Black 1976 formula for second derivative by standard deviation
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
    */
    Real blackFormulaStdDevSecondDerivative(Rate strike,
                                            Rate forward,
                                            Real stdDev,
                                            Real discount,
                                            Real displacement);

    /*! Black 1976 formula for second derivative by standard deviation
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
    */
    Real blackFormulaStdDevSecondDerivative(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real discount = 1.0,
                        Real displacement = 0.0);

    /*! Black style formula when forward is normal rather than
        log-normal. This is essentially the model of Bachelier.

        \warning Bachelier model needs absolute volatility, not
                 percentage volatility. Standard deviation is
                 absoluteVolatility*sqrt(timeToMaturity)
    */
    Real bachelierBlackFormula(Option::Type optionType,
                               Real strike,
                               Real forward,
                               Real stdDev,
                               Real discount = 1.0);

    /*! Black style formula when forward is normal rather than
        log-normal. This is essentially the model of Bachelier.

        \warning Bachelier model needs absolute volatility, not
                 percentage volatility. Standard deviation is
                 absoluteVolatility*sqrt(timeToMaturity)
    */
    Real bachelierBlackFormula(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real discount = 1.0);
    /*! Approximated Bachelier implied volatility

        It is calculated using  the analytic implied volatility approximation
        of J. Choi, K Kim and M. Kwak (2009), “Numerical Approximation of the
        Implied Volatility Under Arithmetic Brownian Motion”,
        Applied Math. Finance, 16(3), pp. 261-268.
    */
    Real bachelierBlackFormulaImpliedVol(Option::Type optionType,
                                   Real strike,
                                   Real forward,
                                   Real tte,
                                   Real bachelierPrice,
                                   Real discount = 1.0);

    /*! Bachelier formula for standard deviation derivative
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
                 If T is the time to maturity Black vega would be
                 blackStdDevDerivative(strike, forward, stdDev)*sqrt(T)
    */

    Real bachelierBlackFormulaStdDevDerivative(Real strike,
                                                Real forward,
                                                Real stdDev,
                                                Real discount = 1.0);

    Real bachelierBlackFormulaStdDevDerivative(const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                                                Real forward,
                                                Real stdDev,
                                                Real discount = 1.0);

}

#endif