This file is indexed.

/usr/include/ql/pricingengines/vanilla/analytichestonengine.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004, 2005, 2008 Klaus Spanderen
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file analytichestonengine.hpp
    \brief analytic Heston-model engine
*/

#ifndef quantlib_analytic_heston_engine_hpp
#define quantlib_analytic_heston_engine_hpp

#include <ql/utilities/null.hpp>
#include <ql/math/integrals/integral.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/pricingengines/genericmodelengine.hpp>
#include <ql/models/equity/hestonmodel.hpp>
#include <ql/instruments/vanillaoption.hpp>

#include <boost/function.hpp>
#include <complex>

namespace QuantLib {

    //! analytic Heston-model engine based on Fourier transform

    /*! Integration detail:
        Two algebraically equivalent formulations of the complex
        logarithm of the Heston model exist. Gatherals [2005]
        (also Duffie, Pan and Singleton [2000], and Schoutens,
        Simons and Tistaert[2004]) version does not cause
        discoutinuities whereas the original version (e.g. Heston [1993])
        needs some sort of "branch correction" to work properly.
        Gatheral's version does also work with adaptive integration
        routines and should be preferred over the original Heston version.
    */

    /*! References:

        Heston, Steven L., 1993. A Closed-Form Solution for Options
        with Stochastic Volatility with Applications to Bond and
        Currency Options.  The review of Financial Studies, Volume 6,
        Issue 2, 327-343.

        A. Sepp, Pricing European-Style Options under Jump Diffusion
        Processes with Stochastic Volatility: Applications of Fourier
        Transform (<http://math.ut.ee/~spartak/papers/stochjumpvols.pdf>)

        R. Lord and C. Kahl, Why the rotation count algorithm works,
        http://papers.ssrn.com/sol3/papers.cfm?abstract_id=921335

        H. Albrecher, P. Mayer, W.Schoutens and J. Tistaert,
        The Little Heston Trap, http://www.schoutens.be/HestonTrap.pdf

        J. Gatheral, The Volatility Surface: A Practitioner's Guide,
        Wiley Finance

        F. Le Floc'h, Fourier Integration and Stochastic Volatility
        Calibration,
        https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2362968

        L. Andersen, and V. Piterbarg, 2010,
        Interest Rate Modeling, Volume I: Foundations and Vanilla Models,
        Atlantic Financial Press London.


        \ingroup vanillaengines

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature
              and comparison with Black pricing.
    */
    class AnalyticHestonEngine
        : public GenericModelEngine<HestonModel,
                                    VanillaOption::arguments,
                                    VanillaOption::results> {
      public:
        class Integration;
        enum ComplexLogFormula { Gatheral, BranchCorrection, AndersenPiterbarg };

        // Simple to use constructor: Using adaptive
        // Gauss-Lobatto integration and Gatheral's version of complex log.
        // Be aware: using a too large number for maxEvaluations might result
        // in a stack overflow as the Lobatto integration is a recursive
        // algorithm.
        AnalyticHestonEngine(const boost::shared_ptr<HestonModel>& model,
                             Real relTolerance, Size maxEvaluations);

        // Constructor using Laguerre integration
        // and Gatheral's version of complex log.
        AnalyticHestonEngine(const boost::shared_ptr<HestonModel>& model,
                             Size integrationOrder = 144);

        // Constructor giving full control
        // over the Fourier integration algorithm
        AnalyticHestonEngine(const boost::shared_ptr<HestonModel>& model,
                             ComplexLogFormula cpxLog, const Integration& itg,
                             Real andersenPiterbargEpsilon = 1e-8);

        // normalized characteristic function
        std::complex<Real> chF(const std::complex<Real>& z, Time t) const;
        std::complex<Real> lnChF(const std::complex<Real>& z, Time t) const;

        void calculate() const;
        Size numberOfEvaluations() const;

        static void doCalculation(Real riskFreeDiscount,
                                  Real dividendDiscount,
                                  Real spotPrice,
                                  Real strikePrice,
                                  Real term,
                                  Real kappa, Real theta, Real sigma, Real v0, Real rho,
                                  const TypePayoff& type,
                                  const Integration& integration,
                                  const ComplexLogFormula cpxLog,
                                  const AnalyticHestonEngine* const enginePtr,
                                  Real& value,
                                  Size& evaluations);

      protected:
        // call back for extended stochastic volatility
        // plus jump diffusion engines like bates model
        virtual std::complex<Real> addOnTerm(Real phi,
                                             Time t,
                                             Size j) const;

      private:
        class Fj_Helper;
        class AP_Helper;

        mutable Size evaluations_;
        const ComplexLogFormula cpxLog_;
        const boost::shared_ptr<Integration> integration_;
        const Real andersenPiterbargEpsilon_;
    };


    class AnalyticHestonEngine::Integration {
      public:
        // non adaptive integration algorithms based on Gaussian quadrature
        static Integration gaussLaguerre    (Size integrationOrder = 128);
        static Integration gaussLegendre    (Size integrationOrder = 128);
        static Integration gaussChebyshev   (Size integrationOrder = 128);
        static Integration gaussChebyshev2nd(Size integrationOrder = 128);

        // for an adaptive integration algorithm Gatheral's version has to
        // be used.Be aware: using a too large number for maxEvaluations might
        // result in a stack overflow as the these integrations are based on
        // recursive algorithms.
        static Integration gaussLobatto(Real relTolerance, Real absTolerance,
                                        Size maxEvaluations = 1000);

        // usually these routines have a poor convergence behavior.
        static Integration gaussKronrod(Real absTolerance,
                                        Size maxEvaluations = 1000);
        static Integration simpson(Real absTolerance,
                                   Size maxEvaluations = 1000);
        static Integration trapezoid(Real absTolerance,
                                     Size maxEvaluations = 1000);
        static Integration discreteSimpson(Size evaluation = 1000);
        static Integration discreteTrapezoid(Size evaluation = 1000);

        static Real andersenPiterbargIntegrationLimit(
            Real c_inf, Real epsilon, Real v0, Real t);

        Real calculate(Real c_inf,
                       const boost::function1<Real, Real>& f,
                       Real maxBound = Null<Real>()) const;

        Size numberOfEvaluations() const;
        bool isAdaptiveIntegration() const;

      private:
        enum Algorithm
            { GaussLobatto, GaussKronrod, Simpson, Trapezoid,
              DiscreteTrapezoid, DiscreteSimpson,
              GaussLaguerre, GaussLegendre,
              GaussChebyshev, GaussChebyshev2nd };

        Integration(Algorithm intAlgo,
                    const boost::shared_ptr<GaussianQuadrature>& quadrature);

        Integration(Algorithm intAlgo,
                    const boost::shared_ptr<Integrator>& integrator);

        const Algorithm intAlgo_;
        const boost::shared_ptr<Integrator> integrator_;
        const boost::shared_ptr<GaussianQuadrature> gaussianQuadrature_;
    };

    // inline

    inline 
    std::complex<Real> AnalyticHestonEngine::addOnTerm(Real,
                                                       Time,
                                                       Size) const {
        return std::complex<Real>(0,0);
    }
}

#endif