This file is indexed.

/usr/include/ql/pricingengines/vanilla/batesengine.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2005 Klaus Spanderen
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file batesengine.hpp
    \brief analytic Bates model engine
*/

#ifndef quantlib_bates_engine_hpp
#define quantlib_bates_engine_hpp

#include <ql/qldefines.hpp>
#include <ql/models/equity/batesmodel.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>

namespace QuantLib {

    //! Bates model engines based on Fourier transform
    /*! this classes price european options under the following processes

        1. Jump-Diffusion with Stochastic Volatility

        \f[
        \begin{array}{rcl}
        dS(t, S)  &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\
        dv(t, S)  &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\
        dW_1 dW_2 &=& \rho dt
        \end{array}
        \f]

        N is a Poisson process with the intensity \f$ \lambda
        \f$. When a jump occurs the magnitude J has the probability
        density function \f$ \omega(J) \f$.

        1.1 Log-Normal Jump Diffusion: BatesEngine

        Logarithm of the jump size J is normally distributed
        \f[
        \omega(J) = \frac{1}{\sqrt{2\pi \delta^2}}
                    \exp\left[-\frac{(J-\nu)^2}{2\delta^2}\right]
        \f]

        1.2  Double-Exponential Jump Diffusion: BatesDoubleExpEngine

        The jump size has an asymmetric double exponential distribution
        \f[
        \begin{array}{rcl}
        \omega(J)&=&  p\frac{1}{\eta_u}e^{-\frac{1}{\eta_u}J} 1_{J>0}
                    + q\frac{1}{\eta_d}e^{\frac{1}{\eta_d}J} 1_{J<0} \\
        p + q &=& 1
        \end{array}
        \f]

        2. Stochastic Volatility with Jump Diffusion
           and Deterministic Jump Intensity

        \f[
        \begin{array}{rcl}
        dS(t, S)  &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\
        dv(t, S)  &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\
        d\lambda(t) &=& \kappa_\lambda(\theta_\lambda-\lambda) dt \\
        dW_1 dW_2 &=& \rho dt
        \end{array}
        \f]

        2.1 Log-Normal Jump Diffusion with Deterministic Jump Intensity
              BatesDetJumpEngine

        2.2 Double-Exponential Jump Diffusion with Deterministic Jump Intensity
              BatesDoubleExpDetJumpEngine


        References:

        D. Bates, Jumps and stochastic volatility: exchange rate processes
        implicit in Deutsche mark options,
        Review of Financial Sudies 9, 69-107.

        A. Sepp, Pricing European-Style Options under Jump Diffusion
        Processes with Stochastic Volatility: Applications of Fourier
        Transform (<http://math.ut.ee/~spartak/papers/stochjumpvols.pdf>)

        \ingroup vanillaengines

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature, testing
              against QuantLib's jump diffusion engine
              and comparison with Black pricing.
    */
    class BatesEngine : public AnalyticHestonEngine {
      public:
        BatesEngine(const boost::shared_ptr<BatesModel>& model,
                    Size integrationOrder = 144);
        BatesEngine(const boost::shared_ptr<BatesModel>& model,
                    Real relTolerance, Size maxEvaluations);

      protected:
        std::complex<Real> addOnTerm(Real phi, Time t, Size j) const;
    };


    class BatesDetJumpEngine : public BatesEngine {
      public:
        BatesDetJumpEngine(const boost::shared_ptr<BatesDetJumpModel>& model,
                           Size integrationOrder = 144);
        BatesDetJumpEngine(const boost::shared_ptr<BatesDetJumpModel>& model,
                           Real relTolerance, Size maxEvaluations);

      protected:
        std::complex<Real> addOnTerm(Real phi, Time t, Size j) const;
    };


    class BatesDoubleExpEngine : public AnalyticHestonEngine {
      public:
        BatesDoubleExpEngine(
            const boost::shared_ptr<BatesDoubleExpModel>& model,
            Size integrationOrder = 144);
        BatesDoubleExpEngine(
            const boost::shared_ptr<BatesDoubleExpModel>& model,
            Real relTolerance, Size maxEvaluations);

      protected:
        std::complex<Real> addOnTerm(Real phi, Time t, Size j) const;
    };


    class BatesDoubleExpDetJumpEngine : public BatesDoubleExpEngine {
      public:
        BatesDoubleExpDetJumpEngine(
            const boost::shared_ptr<BatesDoubleExpDetJumpModel>& model,
            Size integrationOrder = 144);
        BatesDoubleExpDetJumpEngine(
            const boost::shared_ptr<BatesDoubleExpDetJumpModel>& model,
            Real relTolerance, Size maxEvaluations);

      protected:
        std::complex<Real> addOnTerm(Real phi, Time t, Size j) const;
    };

}

#endif