This file is indexed.

/usr/include/ql/processes/blackscholesprocess.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2004, 2005, 2006, 2007, 2009 StatPro Italia srl
 Copyright (C) 2015 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file blackscholesprocess.hpp
    \brief Black-Scholes processes
*/

#ifndef quantlib_black_scholes_process_hpp
#define quantlib_black_scholes_process_hpp

#include <ql/stochasticprocess.hpp>
#include <ql/processes/eulerdiscretization.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/termstructures/volatility/equityfx/blackvoltermstructure.hpp>
#include <ql/termstructures/volatility/equityfx/localvoltermstructure.hpp>
#include <ql/quote.hpp>

namespace QuantLib {

    class LocalConstantVol;
    class LocalVolCurve;

    //! Generalized Black-Scholes stochastic process
    /*! This class describes the stochastic process \f$ S \f$ governed by
        \f[
            d\ln S(t) = (r(t) - q(t) - \frac{\sigma(t, S)^2}{2}) dt
                     + \sigma dW_t.
        \f]

        \warning while the interface is expressed in terms of \f$ S \f$,
                 the internal calculations work on \f$ ln S \f$.

        \ingroup processes
    */
    class GeneralizedBlackScholesProcess : public StochasticProcess1D {
      public:
        GeneralizedBlackScholesProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& dividendTS,
            const Handle<YieldTermStructure>& riskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const boost::shared_ptr<discretization>& d =
                  boost::shared_ptr<discretization>(new EulerDiscretization),
            bool forceDiscretization = false);

        GeneralizedBlackScholesProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& dividendTS,
            const Handle<YieldTermStructure>& riskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const Handle<LocalVolTermStructure>& localVolTS);

        //! \name StochasticProcess1D interface
        //@{
        Real x0() const;
        /*! \todo revise extrapolation */
        Real drift(Time t, Real x) const;
        /*! \todo revise extrapolation */
        Real diffusion(Time t, Real x) const;
        Real apply(Real x0, Real dx) const;
        /*! \warning in general raises a "not implemented" exception.
                     It should be rewritten to return the expectation E(S)
                     of the process, not exp(E(log S)).
        */
        Real expectation(Time t0, Real x0, Time dt) const;
        Real stdDeviation(Time t0, Real x0, Time dt) const;
        Real variance(Time t0, Real x0, Time dt) const;
        Real evolve(Time t0, Real x0, Time dt, Real dw) const;
        //@}
        Time time(const Date&) const;
        //! \name Observer interface
        //@{
        void update();
        //@}
        //! \name Inspectors
        //@{
        const Handle<Quote>& stateVariable() const;
        const Handle<YieldTermStructure>& dividendYield() const;
        const Handle<YieldTermStructure>& riskFreeRate() const;
        const Handle<BlackVolTermStructure>& blackVolatility() const;
        const Handle<LocalVolTermStructure>& localVolatility() const;
        //@}
      private:
        Handle<Quote> x0_;
        Handle<YieldTermStructure> riskFreeRate_, dividendYield_;
        Handle<BlackVolTermStructure> blackVolatility_;
        Handle<LocalVolTermStructure> externalLocalVolTS_;
        bool forceDiscretization_;
        bool hasExternalLocalVol_;
        mutable RelinkableHandle<LocalVolTermStructure> localVolatility_;
        mutable bool updated_, isStrikeIndependent_;
    };

    //! Black-Scholes (1973) stochastic process
    /*! This class describes the stochastic process \f$ S \f$ for a stock
        given by
        \f[
            d\ln S(t) = (r(t) - \frac{\sigma(t, S)^2}{2}) dt + \sigma dW_t.
        \f]

        \warning while the interface is expressed in terms of \f$ S \f$,
                 the internal calculations work on \f$ ln S \f$.

        \ingroup processes
    */
    class BlackScholesProcess : public GeneralizedBlackScholesProcess {
      public:
        BlackScholesProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& riskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const boost::shared_ptr<discretization>& d =
                  boost::shared_ptr<discretization>(new EulerDiscretization),
            bool forceDiscretization = false);
    };

    //! Merton (1973) extension to the Black-Scholes stochastic process
    /*! This class describes the stochastic process ln(S) for a stock or
        stock index paying a continuous dividend yield given by
        \f[
            d\ln S(t, S) = (r(t) - q(t) - \frac{\sigma(t, S)^2}{2}) dt
                     + \sigma dW_t.
        \f]

        \ingroup processes
    */
    class BlackScholesMertonProcess : public GeneralizedBlackScholesProcess {
      public:
        BlackScholesMertonProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& dividendTS,
            const Handle<YieldTermStructure>& riskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const boost::shared_ptr<discretization>& d =
                  boost::shared_ptr<discretization>(new EulerDiscretization),
            bool forceDiscretization = false);
    };

    //! Black (1976) stochastic process
    /*! This class describes the stochastic process \f$ S \f$ for a
        forward or futures contract given by
        \f[
            d\ln S(t) = -\frac{\sigma(t, S)^2}{2} dt + \sigma dW_t.
        \f]

        \warning while the interface is expressed in terms of \f$ S \f$,
                 the internal calculations work on \f$ ln S \f$.

        \ingroup processes
    */
    class BlackProcess : public GeneralizedBlackScholesProcess {
      public:
        BlackProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& riskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const boost::shared_ptr<discretization>& d =
                  boost::shared_ptr<discretization>(new EulerDiscretization),
            bool forceDiscretization = false);
    };

    //! Garman-Kohlhagen (1983) stochastic process
    /*! This class describes the stochastic process \f$ S \f$ for an exchange
        rate given by
        \f[
            d\ln S(t) = (r(t) - r_f(t) - \frac{\sigma(t, S)^2}{2}) dt
                     + \sigma dW_t.
        \f]

        \warning while the interface is expressed in terms of \f$ S \f$,
                 the internal calculations work on \f$ ln S \f$.

        \ingroup processes
    */
    class GarmanKohlagenProcess : public GeneralizedBlackScholesProcess {
      public:
        GarmanKohlagenProcess(
            const Handle<Quote>& x0,
            const Handle<YieldTermStructure>& foreignRiskFreeTS,
            const Handle<YieldTermStructure>& domesticRiskFreeTS,
            const Handle<BlackVolTermStructure>& blackVolTS,
            const boost::shared_ptr<discretization>& d =
                  boost::shared_ptr<discretization>(new EulerDiscretization),
            bool forceDiscretization = false);
    };

}


#endif