This file is indexed.

/usr/include/rdkit/Numerics/SymmMatrix.h is in librdkit-dev 201603.5+dfsg-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
//
//  Copyright (C) 2004-2006 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#ifndef __RD_SYMM_MATRIX_H__
#define __RD_SYMM_MATRIX_H__

#include "Matrix.h"
#include "SquareMatrix.h"
#include <cstring>
#include <boost/smart_ptr.hpp>

//#ifndef INVARIANT_SILENT_METHOD
//#define INVARIANT_SILENT_METHOD
//#endif
namespace RDNumeric {
//! A symmetric matrix class
/*!
  The data is stored as the lower triangle, so
   A[i,j] = data[i*(i+1) + j] when i >= j and
   A[i,j] = data[j*(j+1) + i] when i < j
*/
template <class TYPE>
class SymmMatrix {
 public:
  typedef boost::shared_array<TYPE> DATA_SPTR;

  explicit SymmMatrix(unsigned int N) : d_size(N), d_dataSize(N * (N + 1) / 2) {
    TYPE *data = new TYPE[d_dataSize];
    memset(static_cast<void *>(data), 0, d_dataSize * sizeof(TYPE));
    d_data.reset(data);
  }

  SymmMatrix(unsigned int N, TYPE val)
      : d_size(N), d_dataSize(N * (N + 1) / 2) {
    TYPE *data = new TYPE[d_dataSize];
    unsigned int i;
    for (i = 0; i < d_dataSize; i++) {
      data[i] = val;
    }
    d_data.reset(data);
  }

  SymmMatrix(unsigned int N, DATA_SPTR data)
      : d_size(N), d_dataSize(N * (N + 1) / 2) {
    d_data = data;
  }

  SymmMatrix(const SymmMatrix<TYPE> &other)
      : d_size(other.numRows()), d_dataSize(other.getDataSize()) {
    TYPE *data = new TYPE[d_dataSize];
    const TYPE *otherData = other.getData();

    memcpy(static_cast<void *>(data), static_cast<const void *>(otherData),
           d_dataSize * sizeof(TYPE));
    d_data.reset(data);
  }

  ~SymmMatrix() {}

  //! returns the number of rows
  inline unsigned int numRows() const { return d_size; }

  //! returns the number of columns
  inline unsigned int numCols() const { return d_size; }

  inline unsigned int getDataSize() const { return d_dataSize; }

  void setToIdentity() {
    TYPE *data = d_data.get();
    memset(static_cast<void *>(data), 0, d_dataSize * sizeof(TYPE));
    for (unsigned int i = 0; i < d_size; i++) {
      data[i * (i + 3) / 2] = (TYPE)1.0;
    }
  }

  TYPE getVal(unsigned int i, unsigned int j) const {
    URANGE_CHECK(i, d_size - 1);
    URANGE_CHECK(j, d_size - 1);
    unsigned int id;
    if (i >= j) {
      id = i * (i + 1) / 2 + j;
    } else {
      id = j * (j + 1) / 2 + i;
    }
    return d_data[id];
  }

  void setVal(unsigned int i, unsigned int j, TYPE val) {
    URANGE_CHECK(i, d_size - 1);
    URANGE_CHECK(j, d_size - 1);
    unsigned int id;
    if (i >= j) {
      id = i * (i + 1) / 2 + j;
    } else {
      id = j * (j + 1) / 2 + i;
    }
    d_data[id] = val;
  }

  void getRow(unsigned int i, Vector<TYPE> &row) {
    CHECK_INVARIANT(d_size == row.size(), "");
    TYPE *rData = row.getData();
    TYPE *data = d_data.get();
    for (unsigned int j = 0; j < d_size; j++) {
      unsigned int id;
      if (j <= i) {
        id = i * (i + 1) / 2 + j;
      } else {
        id = j * (j + 1) / 2 + i;
      }
      rData[j] = data[id];
    }
  }

  void getCol(unsigned int i, Vector<TYPE> &col) {
    CHECK_INVARIANT(d_size == col.size(), "");
    TYPE *rData = col.getData();
    TYPE *data = d_data.get();
    for (unsigned int j = 0; j < d_size; j++) {
      unsigned int id;
      if (i <= j) {
        id = j * (j + 1) / 2 + i;
      } else {
        id = i * (i + 1) / 2 + j;
      }
      rData[j] = data[id];
    }
  }

  //! returns a pointer to our data array
  inline TYPE *getData() { return d_data.get(); }

  //! returns a const pointer to our data array
  inline const TYPE *getData() const { return d_data.get(); }

  SymmMatrix<TYPE> &operator*=(TYPE scale) {
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_dataSize; i++) {
      data[i] *= scale;
    }
    return *this;
  }

  SymmMatrix<TYPE> &operator/=(TYPE scale) {
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_dataSize; i++) {
      data[i] /= scale;
    }
    return *this;
  }

  SymmMatrix<TYPE> &operator+=(const SymmMatrix<TYPE> &other) {
    CHECK_INVARIANT(d_size == other.numRows(),
                    "Sizes don't match in the addition");
    const TYPE *oData = other.getData();
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_dataSize; i++) {
      data[i] += oData[i];
    }
    return *this;
  }

  SymmMatrix<TYPE> &operator-=(const SymmMatrix<TYPE> &other) {
    CHECK_INVARIANT(d_size == other.numRows(),
                    "Sizes don't match in the addition");
    const TYPE *oData = other.getData();
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_dataSize; i++) {
      data[i] -= oData[i];
    }
    return *this;
  }

  //! in-place matrix multiplication
  SymmMatrix<TYPE> &operator*=(const SymmMatrix<TYPE> &B) {
    CHECK_INVARIANT(d_size == B.numRows(),
                    "Size mismatch during multiplication");
    TYPE *cData = new TYPE[d_dataSize];
    const TYPE *bData = B.getData();
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_size; i++) {
      unsigned int idC = i * (i + 1) / 2;
      for (unsigned int j = 0; j < i + 1; j++) {
        unsigned int idCt = idC + j;
        cData[idCt] = (TYPE)0.0;
        for (unsigned int k = 0; k < d_size; k++) {
          unsigned int idA, idB;
          if (k <= i) {
            idA = i * (i + 1) / 2 + k;
          } else {
            idA = k * (k + 1) / 2 + i;
          }
          if (k <= j) {
            idB = j * (j + 1) / 2 + k;
          } else {
            idB = k * (k + 1) / 2 + j;
          }
          cData[idCt] += (data[idA] * bData[idB]);
        }
      }
    }

    for (unsigned int i = 0; i < d_dataSize; i++) {
      data[i] = cData[i];
    }
    delete[] cData;
    return (*this);
  }

  /* Transpose will basically return a copy of itself
   */
  SymmMatrix<TYPE> &transpose(SymmMatrix<TYPE> &transpose) const {
    CHECK_INVARIANT(d_size == transpose.numRows(),
                    "Size mismatch during transposing");
    TYPE *tData = transpose.getData();
    TYPE *data = d_data.get();
    for (unsigned int i = 0; i < d_dataSize; i++) {
      tData[i] = data[i];
    }
    return transpose;
  }

  SymmMatrix<TYPE> &transposeInplace() {
    // nothing to be done we are symmetric
    return (*this);
  }

 protected:
  SymmMatrix() : d_size(0), d_dataSize(0), d_data(0){};
  unsigned int d_size;
  unsigned int d_dataSize;
  DATA_SPTR d_data;

 private:
  SymmMatrix<TYPE> &operator=(const SymmMatrix<TYPE> &other);
};

//! SymmMatrix-SymmMatrix multiplication
/*!
  Multiply SymmMatrix A with a second SymmMatrix B
  and write the result to C = A*B

  \param A  the first SymmMatrix
  \param B  the second SymmMatrix to multiply
  \param C  SymmMatrix to use for the results

  \return the results of multiplying A by B.
  This is just a reference to C.

  This method is reimplemented here for efficiency reasons
  (we basically don't want to use getter and setter functions)

*/
template <class TYPE>
SymmMatrix<TYPE> &multiply(const SymmMatrix<TYPE> &A, const SymmMatrix<TYPE> &B,
                           SymmMatrix<TYPE> &C) {
  unsigned int aSize = A.numRows();
  CHECK_INVARIANT(B.numRows() == aSize,
                  "Size mismatch in matric multiplication");
  CHECK_INVARIANT(C.numRows() == aSize,
                  "Size mismatch in matric multiplication");
  TYPE *cData = C.getData();
  const TYPE *aData = A.getData();
  const TYPE *bData = B.getData();
  for (unsigned int i = 0; i < aSize; i++) {
    unsigned int idC = i * (i + 1) / 2;
    for (unsigned int j = 0; j < i + 1; j++) {
      unsigned int idCt = idC + j;
      cData[idCt] = (TYPE)0.0;
      for (unsigned int k = 0; k < aSize; k++) {
        unsigned int idA, idB;
        if (k <= i) {
          idA = i * (i + 1) / 2 + k;
        } else {
          idA = k * (k + 1) / 2 + i;
        }
        if (k <= j) {
          idB = j * (j + 1) / 2 + k;
        } else {
          idB = k * (k + 1) / 2 + j;
        }
        cData[idCt] += (aData[idA] * bData[idB]);
      }
    }
  }
  return C;
}

//! SymmMatrix-Vector multiplication
/*!
  Multiply a SymmMatrix A with a Vector x
  so the result is y = A*x

  \param A  the SymmMatrix for multiplication
  \param x  the Vector by which to multiply
  \param y  Vector to use for the results

  \return the results of multiplying x by A
  This is just a reference to y.

  This method is reimplemented here for efficiency reasons
  (we basically don't want to use getter and setter functions)

*/
template <class TYPE>
Vector<TYPE> &multiply(const SymmMatrix<TYPE> &A, const Vector<TYPE> &x,
                       Vector<TYPE> &y) {
  unsigned int aSize = A.numRows();
  CHECK_INVARIANT(aSize == x.size(), "Size mismatch during multiplication");
  CHECK_INVARIANT(aSize == y.size(), "Size mismatch during multiplication");
  const TYPE *xData = x.getData();
  const TYPE *aData = A.getData();
  TYPE *yData = y.getData();
  for (unsigned int i = 0; i < aSize; i++) {
    yData[i] = (TYPE)(0.0);
    unsigned int idA = i * (i + 1) / 2;
    for (unsigned int j = 0; j < i + 1; j++) {
      // idA = i*(i+1)/2 + j;
      yData[i] += (aData[idA] * xData[j]);
      idA++;
    }
    idA--;
    for (unsigned int j = i + 1; j < aSize; j++) {
      // idA = j*(j+1)/2 + i;
      idA += j;
      yData[i] += (aData[idA] * xData[j]);
    }
  }
  return y;
}

typedef SymmMatrix<double> DoubleSymmMatrix;
typedef SymmMatrix<int> IntSymmMatrix;
typedef SymmMatrix<unsigned int> UintSymmMatrix;
}

//! ostream operator for Matrix's
template <class TYPE>
std::ostream &operator<<(std::ostream &target,
                         const RDNumeric::SymmMatrix<TYPE> &mat) {
  unsigned int nr = mat.numRows();
  unsigned int nc = mat.numCols();
  target << "Rows: " << mat.numRows() << " Columns: " << mat.numCols() << "\n";

  for (unsigned int i = 0; i < nr; i++) {
    for (unsigned int j = 0; j < nc; j++) {
      target << std::setw(7) << std::setprecision(3) << mat.getVal(i, j);
    }
    target << "\n";
  }
  return target;
}

#endif