This file is indexed.

/usr/include/re2/re2.h is in libre2-dev 20180201+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
// Copyright 2003-2009 The RE2 Authors.  All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef RE2_RE2_H_
#define RE2_RE2_H_

// C++ interface to the re2 regular-expression library.
// RE2 supports Perl-style regular expressions (with extensions like
// \d, \w, \s, ...).
//
// -----------------------------------------------------------------------
// REGEXP SYNTAX:
//
// This module uses the re2 library and hence supports
// its syntax for regular expressions, which is similar to Perl's with
// some of the more complicated things thrown away.  In particular,
// backreferences and generalized assertions are not available, nor is \Z.
//
// See https://github.com/google/re2/wiki/Syntax for the syntax
// supported by RE2, and a comparison with PCRE and PERL regexps.
//
// For those not familiar with Perl's regular expressions,
// here are some examples of the most commonly used extensions:
//
//   "hello (\\w+) world"  -- \w matches a "word" character
//   "version (\\d+)"      -- \d matches a digit
//   "hello\\s+world"      -- \s matches any whitespace character
//   "\\b(\\w+)\\b"        -- \b matches non-empty string at word boundary
//   "(?i)hello"           -- (?i) turns on case-insensitive matching
//   "/\\*(.*?)\\*/"       -- .*? matches . minimum no. of times possible
//
// -----------------------------------------------------------------------
// MATCHING INTERFACE:
//
// The "FullMatch" operation checks that supplied text matches a
// supplied pattern exactly.
//
// Example: successful match
//    CHECK(RE2::FullMatch("hello", "h.*o"));
//
// Example: unsuccessful match (requires full match):
//    CHECK(!RE2::FullMatch("hello", "e"));
//
// -----------------------------------------------------------------------
// UTF-8 AND THE MATCHING INTERFACE:
//
// By default, the pattern and input text are interpreted as UTF-8.
// The RE2::Latin1 option causes them to be interpreted as Latin-1.
//
// Example:
//    CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
//    CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
//
// -----------------------------------------------------------------------
// MATCHING WITH SUB-STRING EXTRACTION:
//
// You can supply extra pointer arguments to extract matched subpieces.
//
// Example: extracts "ruby" into "s" and 1234 into "i"
//    int i;
//    string s;
//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
//
// Example: fails because string cannot be stored in integer
//    CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
//
// Example: fails because there aren't enough sub-patterns:
//    CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
//
// Example: does not try to extract any extra sub-patterns
//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
//
// Example: does not try to extract into NULL
//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
//
// Example: integer overflow causes failure
//    CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
//
// NOTE(rsc): Asking for substrings slows successful matches quite a bit.
// This may get a little faster in the future, but right now is slower
// than PCRE.  On the other hand, failed matches run *very* fast (faster
// than PCRE), as do matches without substring extraction.
//
// -----------------------------------------------------------------------
// PARTIAL MATCHES
//
// You can use the "PartialMatch" operation when you want the pattern
// to match any substring of the text.
//
// Example: simple search for a string:
//      CHECK(RE2::PartialMatch("hello", "ell"));
//
// Example: find first number in a string
//      int number;
//      CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
//      CHECK_EQ(number, 100);
//
// -----------------------------------------------------------------------
// PRE-COMPILED REGULAR EXPRESSIONS
//
// RE2 makes it easy to use any string as a regular expression, without
// requiring a separate compilation step.
//
// If speed is of the essence, you can create a pre-compiled "RE2"
// object from the pattern and use it multiple times.  If you do so,
// you can typically parse text faster than with sscanf.
//
// Example: precompile pattern for faster matching:
//    RE2 pattern("h.*o");
//    while (ReadLine(&str)) {
//      if (RE2::FullMatch(str, pattern)) ...;
//    }
//
// -----------------------------------------------------------------------
// SCANNING TEXT INCREMENTALLY
//
// The "Consume" operation may be useful if you want to repeatedly
// match regular expressions at the front of a string and skip over
// them as they match.  This requires use of the "StringPiece" type,
// which represents a sub-range of a real string.
//
// Example: read lines of the form "var = value" from a string.
//      string contents = ...;          // Fill string somehow
//      StringPiece input(contents);    // Wrap a StringPiece around it
//
//      string var;
//      int value;
//      while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
//        ...;
//      }
//
// Each successful call to "Consume" will set "var/value", and also
// advance "input" so it points past the matched text.  Note that if the
// regular expression matches an empty string, input will advance
// by 0 bytes.  If the regular expression being used might match
// an empty string, the loop body must check for this case and either
// advance the string or break out of the loop.
//
// The "FindAndConsume" operation is similar to "Consume" but does not
// anchor your match at the beginning of the string.  For example, you
// could extract all words from a string by repeatedly calling
//     RE2::FindAndConsume(&input, "(\\w+)", &word)
//
// -----------------------------------------------------------------------
// USING VARIABLE NUMBER OF ARGUMENTS
//
// The above operations require you to know the number of arguments
// when you write the code.  This is not always possible or easy (for
// example, the regular expression may be calculated at run time).
// You can use the "N" version of the operations when the number of
// match arguments are determined at run time.
//
// Example:
//   const RE2::Arg* args[10];
//   int n;
//   // ... populate args with pointers to RE2::Arg values ...
//   // ... set n to the number of RE2::Arg objects ...
//   bool match = RE2::FullMatchN(input, pattern, args, n);
//
// The last statement is equivalent to
//
//   bool match = RE2::FullMatch(input, pattern,
//                               *args[0], *args[1], ..., *args[n - 1]);
//
// -----------------------------------------------------------------------
// PARSING HEX/OCTAL/C-RADIX NUMBERS
//
// By default, if you pass a pointer to a numeric value, the
// corresponding text is interpreted as a base-10 number.  You can
// instead wrap the pointer with a call to one of the operators Hex(),
// Octal(), or CRadix() to interpret the text in another base.  The
// CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
// prefixes, but defaults to base-10.
//
// Example:
//   int a, b, c, d;
//   CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
//         RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
// will leave 64 in a, b, c, and d.

#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <map>
#include <mutex>
#include <string>

#include "re2/stringpiece.h"

namespace re2 {
class Prog;
class Regexp;
}  // namespace re2

namespace re2 {

// TODO(junyer): Get rid of this.
using std::string;

// Interface for regular expression matching.  Also corresponds to a
// pre-compiled regular expression.  An "RE2" object is safe for
// concurrent use by multiple threads.
class RE2 {
 public:
  // We convert user-passed pointers into special Arg objects
  class Arg;
  class Options;

  // Defined in set.h.
  class Set;

  enum ErrorCode {
    NoError = 0,

    // Unexpected error
    ErrorInternal,

    // Parse errors
    ErrorBadEscape,          // bad escape sequence
    ErrorBadCharClass,       // bad character class
    ErrorBadCharRange,       // bad character class range
    ErrorMissingBracket,     // missing closing ]
    ErrorMissingParen,       // missing closing )
    ErrorTrailingBackslash,  // trailing \ at end of regexp
    ErrorRepeatArgument,     // repeat argument missing, e.g. "*"
    ErrorRepeatSize,         // bad repetition argument
    ErrorRepeatOp,           // bad repetition operator
    ErrorBadPerlOp,          // bad perl operator
    ErrorBadUTF8,            // invalid UTF-8 in regexp
    ErrorBadNamedCapture,    // bad named capture group
    ErrorPatternTooLarge     // pattern too large (compile failed)
  };

  // Predefined common options.
  // If you need more complicated things, instantiate
  // an Option class, possibly passing one of these to
  // the Option constructor, change the settings, and pass that
  // Option class to the RE2 constructor.
  enum CannedOptions {
    DefaultOptions = 0,
    Latin1, // treat input as Latin-1 (default UTF-8)
    POSIX, // POSIX syntax, leftmost-longest match
    Quiet // do not log about regexp parse errors
  };

  // Need to have the const char* and const string& forms for implicit
  // conversions when passing string literals to FullMatch and PartialMatch.
  // Otherwise the StringPiece form would be sufficient.
#ifndef SWIG
  RE2(const char* pattern);
  RE2(const string& pattern);
#endif
  RE2(const StringPiece& pattern);
  RE2(const StringPiece& pattern, const Options& options);
  ~RE2();

  // Returns whether RE2 was created properly.
  bool ok() const { return error_code() == NoError; }

  // The string specification for this RE2.  E.g.
  //   RE2 re("ab*c?d+");
  //   re.pattern();    // "ab*c?d+"
  const string& pattern() const { return pattern_; }

  // If RE2 could not be created properly, returns an error string.
  // Else returns the empty string.
  const string& error() const { return *error_; }

  // If RE2 could not be created properly, returns an error code.
  // Else returns RE2::NoError (== 0).
  ErrorCode error_code() const { return error_code_; }

  // If RE2 could not be created properly, returns the offending
  // portion of the regexp.
  const string& error_arg() const { return error_arg_; }

  // Returns the program size, a very approximate measure of a regexp's "cost".
  // Larger numbers are more expensive than smaller numbers.
  int ProgramSize() const;

  // EXPERIMENTAL! SUBJECT TO CHANGE!
  // Outputs the program fanout as a histogram bucketed by powers of 2.
  // Returns the number of the largest non-empty bucket.
  int ProgramFanout(std::map<int, int>* histogram) const;

  // Returns the underlying Regexp; not for general use.
  // Returns entire_regexp_ so that callers don't need
  // to know about prefix_ and prefix_foldcase_.
  re2::Regexp* Regexp() const { return entire_regexp_; }

  /***** The useful part: the matching interface *****/

  // Matches "text" against "re".  If pointer arguments are
  // supplied, copies matched sub-patterns into them.
  //
  // You can pass in a "const char*" or a "string" for "text".
  // You can pass in a "const char*" or a "string" or a "RE2" for "re".
  //
  // The provided pointer arguments can be pointers to any scalar numeric
  // type, or one of:
  //    string          (matched piece is copied to string)
  //    StringPiece     (StringPiece is mutated to point to matched piece)
  //    T               (where "bool T::ParseFrom(const char*, size_t)" exists)
  //    (void*)NULL     (the corresponding matched sub-pattern is not copied)
  //
  // Returns true iff all of the following conditions are satisfied:
  //   a. "text" matches "re" exactly
  //   b. The number of matched sub-patterns is >= number of supplied pointers
  //   c. The "i"th argument has a suitable type for holding the
  //      string captured as the "i"th sub-pattern.  If you pass in
  //      NULL for the "i"th argument, or pass fewer arguments than
  //      number of sub-patterns, "i"th captured sub-pattern is
  //      ignored.
  //
  // CAVEAT: An optional sub-pattern that does not exist in the
  // matched string is assigned the empty string.  Therefore, the
  // following will return false (because the empty string is not a
  // valid number):
  //    int number;
  //    RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
  static bool FullMatchN(const StringPiece& text, const RE2& re,
                         const Arg* const args[], int argc);

  // Exactly like FullMatch(), except that "re" is allowed to match
  // a substring of "text".
  static bool PartialMatchN(const StringPiece& text, const RE2& re,
                            const Arg* const args[], int argc);

  // Like FullMatch() and PartialMatch(), except that "re" has to match
  // a prefix of the text, and "input" is advanced past the matched
  // text.  Note: "input" is modified iff this routine returns true.
  static bool ConsumeN(StringPiece* input, const RE2& re,
                       const Arg* const args[], int argc);

  // Like Consume(), but does not anchor the match at the beginning of
  // the text.  That is, "re" need not start its match at the beginning
  // of "input".  For example, "FindAndConsume(s, "(\\w+)", &word)" finds
  // the next word in "s" and stores it in "word".
  static bool FindAndConsumeN(StringPiece* input, const RE2& re,
                              const Arg* const args[], int argc);

#ifndef SWIG
 private:
  template <typename F, typename SP>
  static inline bool Apply(F f, SP sp, const RE2& re) {
    return f(sp, re, NULL, 0);
  }

  template <typename F, typename SP, typename... A>
  static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) {
    const Arg* const args[] = {&a...};
    const int argc = sizeof...(a);
    return f(sp, re, args, argc);
  }

 public:
  // In order to allow FullMatch() et al. to be called with a varying number
  // of arguments of varying types, we use two layers of variadic templates.
  // The first layer constructs the temporary Arg objects. The second layer
  // (above) constructs the array of pointers to the temporary Arg objects.

  template <typename... A>
  static bool FullMatch(const StringPiece& text, const RE2& re, A&&... a) {
    return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...);
  }

  template <typename... A>
  static bool PartialMatch(const StringPiece& text, const RE2& re, A&&... a) {
    return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...);
  }

  template <typename... A>
  static bool Consume(StringPiece* input, const RE2& re, A&&... a) {
    return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...);
  }

  template <typename... A>
  static bool FindAndConsume(StringPiece* input, const RE2& re, A&&... a) {
    return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...);
  }
#endif

  // Replace the first match of "pattern" in "str" with "rewrite".
  // Within "rewrite", backslash-escaped digits (\1 to \9) can be
  // used to insert text matching corresponding parenthesized group
  // from the pattern.  \0 in "rewrite" refers to the entire matching
  // text.  E.g.,
  //
  //   string s = "yabba dabba doo";
  //   CHECK(RE2::Replace(&s, "b+", "d"));
  //
  // will leave "s" containing "yada dabba doo"
  //
  // Returns true if the pattern matches and a replacement occurs,
  // false otherwise.
  static bool Replace(string *str,
                      const RE2& pattern,
                      const StringPiece& rewrite);

  // Like Replace(), except replaces successive non-overlapping occurrences
  // of the pattern in the string with the rewrite. E.g.
  //
  //   string s = "yabba dabba doo";
  //   CHECK(RE2::GlobalReplace(&s, "b+", "d"));
  //
  // will leave "s" containing "yada dada doo"
  // Replacements are not subject to re-matching.
  //
  // Because GlobalReplace only replaces non-overlapping matches,
  // replacing "ana" within "banana" makes only one replacement, not two.
  //
  // Returns the number of replacements made.
  static int GlobalReplace(string *str,
                           const RE2& pattern,
                           const StringPiece& rewrite);

  // Like Replace, except that if the pattern matches, "rewrite"
  // is copied into "out" with substitutions.  The non-matching
  // portions of "text" are ignored.
  //
  // Returns true iff a match occurred and the extraction happened
  // successfully;  if no match occurs, the string is left unaffected.
  //
  // REQUIRES: "text" must not alias any part of "*out".
  static bool Extract(const StringPiece &text,
                      const RE2& pattern,
                      const StringPiece &rewrite,
                      string *out);

  // Escapes all potentially meaningful regexp characters in
  // 'unquoted'.  The returned string, used as a regular expression,
  // will exactly match the original string.  For example,
  //           1.5-2.0?
  // may become:
  //           1\.5\-2\.0\?
  static string QuoteMeta(const StringPiece& unquoted);

  // Computes range for any strings matching regexp. The min and max can in
  // some cases be arbitrarily precise, so the caller gets to specify the
  // maximum desired length of string returned.
  //
  // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
  // string s that is an anchored match for this regexp satisfies
  //   min <= s && s <= max.
  //
  // Note that PossibleMatchRange() will only consider the first copy of an
  // infinitely repeated element (i.e., any regexp element followed by a '*' or
  // '+' operator). Regexps with "{N}" constructions are not affected, as those
  // do not compile down to infinite repetitions.
  //
  // Returns true on success, false on error.
  bool PossibleMatchRange(string* min, string* max, int maxlen) const;

  // Generic matching interface

  // Type of match.
  enum Anchor {
    UNANCHORED,         // No anchoring
    ANCHOR_START,       // Anchor at start only
    ANCHOR_BOTH         // Anchor at start and end
  };

  // Return the number of capturing subpatterns, or -1 if the
  // regexp wasn't valid on construction.  The overall match ($0)
  // does not count: if the regexp is "(a)(b)", returns 2.
  int NumberOfCapturingGroups() const;

  // Return a map from names to capturing indices.
  // The map records the index of the leftmost group
  // with the given name.
  // Only valid until the re is deleted.
  const std::map<string, int>& NamedCapturingGroups() const;

  // Return a map from capturing indices to names.
  // The map has no entries for unnamed groups.
  // Only valid until the re is deleted.
  const std::map<int, string>& CapturingGroupNames() const;

  // General matching routine.
  // Match against text starting at offset startpos
  // and stopping the search at offset endpos.
  // Returns true if match found, false if not.
  // On a successful match, fills in match[] (up to nmatch entries)
  // with information about submatches.
  // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
  // setting match[0] = "barbaz", match[1].data() = NULL, match[2] = "bar",
  // match[3].data() = NULL, ..., up to match[nmatch-1].data() = NULL.
  //
  // Don't ask for more match information than you will use:
  // runs much faster with nmatch == 1 than nmatch > 1, and
  // runs even faster if nmatch == 0.
  // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
  // but will be handled correctly.
  //
  // Passing text == StringPiece(NULL, 0) will be handled like any other
  // empty string, but note that on return, it will not be possible to tell
  // whether submatch i matched the empty string or did not match:
  // either way, match[i].data() == NULL.
  bool Match(const StringPiece& text,
             size_t startpos,
             size_t endpos,
             Anchor anchor,
             StringPiece *match,
             int nmatch) const;

  // Check that the given rewrite string is suitable for use with this
  // regular expression.  It checks that:
  //   * The regular expression has enough parenthesized subexpressions
  //     to satisfy all of the \N tokens in rewrite
  //   * The rewrite string doesn't have any syntax errors.  E.g.,
  //     '\' followed by anything other than a digit or '\'.
  // A true return value guarantees that Replace() and Extract() won't
  // fail because of a bad rewrite string.
  bool CheckRewriteString(const StringPiece& rewrite, string* error) const;

  // Returns the maximum submatch needed for the rewrite to be done by
  // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
  static int MaxSubmatch(const StringPiece& rewrite);

  // Append the "rewrite" string, with backslash subsitutions from "vec",
  // to string "out".
  // Returns true on success.  This method can fail because of a malformed
  // rewrite string.  CheckRewriteString guarantees that the rewrite will
  // be sucessful.
  bool Rewrite(string* out,
               const StringPiece& rewrite,
               const StringPiece* vec,
               int veclen) const;

  // Constructor options
  class Options {
   public:
    // The options are (defaults in parentheses):
    //
    //   utf8             (true)  text and pattern are UTF-8; otherwise Latin-1
    //   posix_syntax     (false) restrict regexps to POSIX egrep syntax
    //   longest_match    (false) search for longest match, not first match
    //   log_errors       (true)  log syntax and execution errors to ERROR
    //   max_mem          (see below)  approx. max memory footprint of RE2
    //   literal          (false) interpret string as literal, not regexp
    //   never_nl         (false) never match \n, even if it is in regexp
    //   dot_nl           (false) dot matches everything including new line
    //   never_capture    (false) parse all parens as non-capturing
    //   case_sensitive   (true)  match is case-sensitive (regexp can override
    //                              with (?i) unless in posix_syntax mode)
    //
    // The following options are only consulted when posix_syntax == true.
    // (When posix_syntax == false these features are always enabled and
    // cannot be turned off.)
    //   perl_classes     (false) allow Perl's \d \s \w \D \S \W
    //   word_boundary    (false) allow Perl's \b \B (word boundary and not)
    //   one_line         (false) ^ and $ only match beginning and end of text
    //
    // The max_mem option controls how much memory can be used
    // to hold the compiled form of the regexp (the Prog) and
    // its cached DFA graphs.  Code Search placed limits on the number
    // of Prog instructions and DFA states: 10,000 for both.
    // In RE2, those limits would translate to about 240 KB per Prog
    // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
    // better job of keeping them small than Code Search did).
    // Each RE2 has two Progs (one forward, one reverse), and each Prog
    // can have two DFAs (one first match, one longest match).
    // That makes 4 DFAs:
    //
    //   forward, first-match    - used for UNANCHORED or ANCHOR_LEFT searches
    //                               if opt.longest_match() == false
    //   forward, longest-match  - used for all ANCHOR_BOTH searches,
    //                               and the other two kinds if
    //                               opt.longest_match() == true
    //   reverse, first-match    - never used
    //   reverse, longest-match  - used as second phase for unanchored searches
    //
    // The RE2 memory budget is statically divided between the two
    // Progs and then the DFAs: two thirds to the forward Prog
    // and one third to the reverse Prog.  The forward Prog gives half
    // of what it has left over to each of its DFAs.  The reverse Prog
    // gives it all to its longest-match DFA.
    //
    // Once a DFA fills its budget, it flushes its cache and starts over.
    // If this happens too often, RE2 falls back on the NFA implementation.

    // For now, make the default budget something close to Code Search.
    static const int kDefaultMaxMem = 8<<20;

    enum Encoding {
      EncodingUTF8 = 1,
      EncodingLatin1
    };

    Options() :
      encoding_(EncodingUTF8),
      posix_syntax_(false),
      longest_match_(false),
      log_errors_(true),
      max_mem_(kDefaultMaxMem),
      literal_(false),
      never_nl_(false),
      dot_nl_(false),
      never_capture_(false),
      case_sensitive_(true),
      perl_classes_(false),
      word_boundary_(false),
      one_line_(false) {
    }

    /*implicit*/ Options(CannedOptions);

    Encoding encoding() const { return encoding_; }
    void set_encoding(Encoding encoding) { encoding_ = encoding; }

    // Legacy interface to encoding.
    // TODO(rsc): Remove once clients have been converted.
    bool utf8() const { return encoding_ == EncodingUTF8; }
    void set_utf8(bool b) {
      if (b) {
        encoding_ = EncodingUTF8;
      } else {
        encoding_ = EncodingLatin1;
      }
    }

    bool posix_syntax() const { return posix_syntax_; }
    void set_posix_syntax(bool b) { posix_syntax_ = b; }

    bool longest_match() const { return longest_match_; }
    void set_longest_match(bool b) { longest_match_ = b; }

    bool log_errors() const { return log_errors_; }
    void set_log_errors(bool b) { log_errors_ = b; }

    int64_t max_mem() const { return max_mem_; }
    void set_max_mem(int64_t m) { max_mem_ = m; }

    bool literal() const { return literal_; }
    void set_literal(bool b) { literal_ = b; }

    bool never_nl() const { return never_nl_; }
    void set_never_nl(bool b) { never_nl_ = b; }

    bool dot_nl() const { return dot_nl_; }
    void set_dot_nl(bool b) { dot_nl_ = b; }

    bool never_capture() const { return never_capture_; }
    void set_never_capture(bool b) { never_capture_ = b; }

    bool case_sensitive() const { return case_sensitive_; }
    void set_case_sensitive(bool b) { case_sensitive_ = b; }

    bool perl_classes() const { return perl_classes_; }
    void set_perl_classes(bool b) { perl_classes_ = b; }

    bool word_boundary() const { return word_boundary_; }
    void set_word_boundary(bool b) { word_boundary_ = b; }

    bool one_line() const { return one_line_; }
    void set_one_line(bool b) { one_line_ = b; }

    void Copy(const Options& src) {
      *this = src;
    }

    int ParseFlags() const;

   private:
    Encoding encoding_;
    bool posix_syntax_;
    bool longest_match_;
    bool log_errors_;
    int64_t max_mem_;
    bool literal_;
    bool never_nl_;
    bool dot_nl_;
    bool never_capture_;
    bool case_sensitive_;
    bool perl_classes_;
    bool word_boundary_;
    bool one_line_;
  };

  // Returns the options set in the constructor.
  const Options& options() const { return options_; };

  // Argument converters; see below.
  static inline Arg CRadix(short* x);
  static inline Arg CRadix(unsigned short* x);
  static inline Arg CRadix(int* x);
  static inline Arg CRadix(unsigned int* x);
  static inline Arg CRadix(long* x);
  static inline Arg CRadix(unsigned long* x);
  static inline Arg CRadix(long long* x);
  static inline Arg CRadix(unsigned long long* x);

  static inline Arg Hex(short* x);
  static inline Arg Hex(unsigned short* x);
  static inline Arg Hex(int* x);
  static inline Arg Hex(unsigned int* x);
  static inline Arg Hex(long* x);
  static inline Arg Hex(unsigned long* x);
  static inline Arg Hex(long long* x);
  static inline Arg Hex(unsigned long long* x);

  static inline Arg Octal(short* x);
  static inline Arg Octal(unsigned short* x);
  static inline Arg Octal(int* x);
  static inline Arg Octal(unsigned int* x);
  static inline Arg Octal(long* x);
  static inline Arg Octal(unsigned long* x);
  static inline Arg Octal(long long* x);
  static inline Arg Octal(unsigned long long* x);

 private:
  void Init(const StringPiece& pattern, const Options& options);

  bool DoMatch(const StringPiece& text,
               Anchor anchor,
               size_t* consumed,
               const Arg* const args[],
               int n) const;

  re2::Prog* ReverseProg() const;

  string        pattern_;          // string regular expression
  Options       options_;          // option flags
  string        prefix_;           // required prefix (before regexp_)
  bool          prefix_foldcase_;  // prefix is ASCII case-insensitive
  re2::Regexp*  entire_regexp_;    // parsed regular expression
  re2::Regexp*  suffix_regexp_;    // parsed regular expression, prefix removed
  re2::Prog*    prog_;             // compiled program for regexp
  bool          is_one_pass_;      // can use prog_->SearchOnePass?

  mutable re2::Prog*     rprog_;         // reverse program for regexp
  mutable const string*  error_;         // Error indicator
                                         // (or points to empty string)
  mutable ErrorCode      error_code_;    // Error code
  mutable string         error_arg_;     // Fragment of regexp showing error
  mutable int            num_captures_;  // Number of capturing groups

  // Map from capture names to indices
  mutable const std::map<string, int>* named_groups_;

  // Map from capture indices to names
  mutable const std::map<int, string>* group_names_;

  // Onces for lazy computations.
  mutable std::once_flag rprog_once_;
  mutable std::once_flag num_captures_once_;
  mutable std::once_flag named_groups_once_;
  mutable std::once_flag group_names_once_;

  RE2(const RE2&) = delete;
  RE2& operator=(const RE2&) = delete;
};

/***** Implementation details *****/

// Hex/Octal/Binary?

// Special class for parsing into objects that define a ParseFrom() method
template <class T>
class _RE2_MatchObject {
 public:
  static inline bool Parse(const char* str, size_t n, void* dest) {
    if (dest == NULL) return true;
    T* object = reinterpret_cast<T*>(dest);
    return object->ParseFrom(str, n);
  }
};

class RE2::Arg {
 public:
  // Empty constructor so we can declare arrays of RE2::Arg
  Arg();

  // Constructor specially designed for NULL arguments
  Arg(void*);
  Arg(std::nullptr_t);

  typedef bool (*Parser)(const char* str, size_t n, void* dest);

// Type-specific parsers
#define MAKE_PARSER(type, name)            \
  Arg(type* p) : arg_(p), parser_(name) {} \
  Arg(type* p, Parser parser) : arg_(p), parser_(parser) {}

  MAKE_PARSER(char,               parse_char);
  MAKE_PARSER(signed char,        parse_schar);
  MAKE_PARSER(unsigned char,      parse_uchar);
  MAKE_PARSER(float,              parse_float);
  MAKE_PARSER(double,             parse_double);
  MAKE_PARSER(string,             parse_string);
  MAKE_PARSER(StringPiece,        parse_stringpiece);

  MAKE_PARSER(short,              parse_short);
  MAKE_PARSER(unsigned short,     parse_ushort);
  MAKE_PARSER(int,                parse_int);
  MAKE_PARSER(unsigned int,       parse_uint);
  MAKE_PARSER(long,               parse_long);
  MAKE_PARSER(unsigned long,      parse_ulong);
  MAKE_PARSER(long long,          parse_longlong);
  MAKE_PARSER(unsigned long long, parse_ulonglong);

#undef MAKE_PARSER

  // Generic constructor templates
  template <class T> Arg(T* p)
      : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { }
  template <class T> Arg(T* p, Parser parser)
      : arg_(p), parser_(parser) { }

  // Parse the data
  bool Parse(const char* str, size_t n) const;

 private:
  void*         arg_;
  Parser        parser_;

  static bool parse_null          (const char* str, size_t n, void* dest);
  static bool parse_char          (const char* str, size_t n, void* dest);
  static bool parse_schar         (const char* str, size_t n, void* dest);
  static bool parse_uchar         (const char* str, size_t n, void* dest);
  static bool parse_float         (const char* str, size_t n, void* dest);
  static bool parse_double        (const char* str, size_t n, void* dest);
  static bool parse_string        (const char* str, size_t n, void* dest);
  static bool parse_stringpiece   (const char* str, size_t n, void* dest);

#define DECLARE_INTEGER_PARSER(name)                                       \
 private:                                                                  \
  static bool parse_##name(const char* str, size_t n, void* dest);         \
  static bool parse_##name##_radix(const char* str, size_t n, void* dest,  \
                                   int radix);                             \
                                                                           \
 public:                                                                   \
  static bool parse_##name##_hex(const char* str, size_t n, void* dest);   \
  static bool parse_##name##_octal(const char* str, size_t n, void* dest); \
  static bool parse_##name##_cradix(const char* str, size_t n, void* dest)

  DECLARE_INTEGER_PARSER(short);
  DECLARE_INTEGER_PARSER(ushort);
  DECLARE_INTEGER_PARSER(int);
  DECLARE_INTEGER_PARSER(uint);
  DECLARE_INTEGER_PARSER(long);
  DECLARE_INTEGER_PARSER(ulong);
  DECLARE_INTEGER_PARSER(longlong);
  DECLARE_INTEGER_PARSER(ulonglong);

#undef DECLARE_INTEGER_PARSER

};

inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
inline RE2::Arg::Arg(std::nullptr_t p) : arg_(p), parser_(parse_null) { }

inline bool RE2::Arg::Parse(const char* str, size_t n) const {
  return (*parser_)(str, n, arg_);
}

// This part of the parser, appropriate only for ints, deals with bases
#define MAKE_INTEGER_PARSER(type, name)                    \
  inline RE2::Arg RE2::Hex(type* ptr) {                    \
    return RE2::Arg(ptr, RE2::Arg::parse_##name##_hex);    \
  }                                                        \
  inline RE2::Arg RE2::Octal(type* ptr) {                  \
    return RE2::Arg(ptr, RE2::Arg::parse_##name##_octal);  \
  }                                                        \
  inline RE2::Arg RE2::CRadix(type* ptr) {                 \
    return RE2::Arg(ptr, RE2::Arg::parse_##name##_cradix); \
  }

MAKE_INTEGER_PARSER(short,              short)
MAKE_INTEGER_PARSER(unsigned short,     ushort)
MAKE_INTEGER_PARSER(int,                int)
MAKE_INTEGER_PARSER(unsigned int,       uint)
MAKE_INTEGER_PARSER(long,               long)
MAKE_INTEGER_PARSER(unsigned long,      ulong)
MAKE_INTEGER_PARSER(long long,          longlong)
MAKE_INTEGER_PARSER(unsigned long long, ulonglong)

#undef MAKE_INTEGER_PARSER

#ifndef SWIG

// Silence warnings about missing initializers for members of LazyRE2.
// Note that we test for Clang first because it defines __GNUC__ as well.
#if defined(__clang__)
#elif defined(__GNUC__) && __GNUC__ >= 6
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif

// Helper for writing global or static RE2s safely.
// Write
//     static LazyRE2 re = {".*"};
// and then use *re instead of writing
//     static RE2 re(".*");
// The former is more careful about multithreaded
// situations than the latter.
//
// N.B. This class never deletes the RE2 object that
// it constructs: that's a feature, so that it can be used
// for global and function static variables.
class LazyRE2 {
 private:
  struct NoArg {};

 public:
  typedef RE2 element_type;  // support std::pointer_traits

  // Constructor omitted to preserve braced initialization in C++98.

  // Pretend to be a pointer to Type (never NULL due to on-demand creation):
  RE2& operator*() const { return *get(); }
  RE2* operator->() const { return get(); }

  // Named accessor/initializer:
  RE2* get() const {
    std::call_once(once_, &LazyRE2::Init, this);
    return ptr_;
  }

  // All data fields must be public to support {"foo"} initialization.
  const char* pattern_;
  RE2::CannedOptions options_;
  NoArg barrier_against_excess_initializers_;

  mutable RE2* ptr_;
  mutable std::once_flag once_;

 private:
  static void Init(const LazyRE2* lazy_re2) {
    lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_);
  }

  void operator=(const LazyRE2&);  // disallowed
};
#endif  // SWIG

}  // namespace re2

using re2::RE2;
using re2::LazyRE2;

#endif  // RE2_RE2_H_