This file is indexed.

/usr/share/doc/libreact-ocaml-dev/breakout.ml is in libreact-ocaml-dev 1.2.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
(*---------------------------------------------------------------------------
   Copyright (c) (c) 2009 Daniel C. Bünzli. All rights reserved.
   Distributed under a BSD3 license, see license at the end of the file.
  ---------------------------------------------------------------------------*)

(* Breakout clone. *)

open React;;

module Log : sig               (* Logs values, signals and events to stderr. *)
  val init : unit -> unit
  val value : (Format.formatter -> 'a -> unit) -> string -> 'a -> unit
  val e : (Format.formatter -> 'a -> unit) -> string -> 'a event -> 'a event
  val s : (Format.formatter -> 'a -> unit) -> string -> 'a signal -> 'a signal
end = struct
  let init () =
    let t = Unix.gettimeofday () in
    let tm = Unix.localtime t in
    Format.eprintf
      "\x1B[2J\x1B[H\x1B[7m@[>> %04d-%02d-%02d %02d:%02d:%02d <<@]\x1B[0m@."
      (tm.Unix.tm_year + 1900) (tm.Unix.tm_mon + 1) tm.Unix.tm_mday
      tm.Unix.tm_hour tm.Unix.tm_min tm.Unix.tm_sec

  let value pp name v = Format.eprintf "@[<hov 2>%s =@ %a@]@." name pp v
  let e pp name e = E.trace (value pp name) e
  let s pp name s = S.trace (value pp name) s
end

module V2 : sig                                                  (* Vectors. *)
  type t
  val v : float -> float -> t
  val o : t
  val ex : t
  val ey : t
  val x : t -> float
  val y : t -> float
  val add : t -> t -> t
  val sub : t -> t -> t
  val neg : t -> t
  val smul : float -> t -> t
  val dot : t -> t -> float
  val to_ints : t -> int * int
  val print : Format.formatter -> t -> unit
end = struct
  type t = { x : float; y : float }
  let v x y = { x = x; y = y }
  let o = v 0. 0.
  let ex = v 1. 0.
  let ey = v 0. 1.
  let x p = p.x
  let y p = p.y
  let add p p' = v (p.x +. p'.x) (p.y +. p'.y)
  let sub p p' = v (p.x -. p'.x) (p.y -. p'.y)
  let neg p = v (-. p.x) (-. p.y)
  let smul s p = v (s *. p.x) (s *. p.y)
  let dot p p' = p.x *. p'.x +. p.y *. p'.y
  let to_ints p = (truncate p.x, truncate p.y)
  let print pp p = Format.fprintf pp "(%F,%F)" p.x p.y
end

module Rect : sig                                             (* Rectangles. *)
  type t
  val create : V2.t -> V2.t -> t           (* lower left corner and extents. *)
  val empty : t
  val o : t -> V2.t
  val size : t -> V2.t
  val xmin : t -> float
  val xmax : t -> float
  val ymin : t -> float
  val ymax : t -> float
  val print : Format.formatter -> t -> unit
end = struct
  type t = V2.t * V2.t
  let create o size = o, size
  let empty = V2.o, V2.o
  let o (o, s) = o
  let size (_, s) = s
  let xmin (o, _) = V2.x o
  let xmax (o, s) = V2.x o +. V2.x s
  let ymin (o, _) = V2.y o
  let ymax (o, s) = V2.y o +. V2.y s
  let print pp (o, s) = Format.fprintf pp "%a %a" V2.print o V2.print s
end

module Draw : sig                        (* Draw with ANSI escape sequences. *)
  val frame : Rect.t
  val init : unit -> unit
  val clear : unit -> unit
  val flush : unit -> unit
  val text : ?center:bool -> ?color:int -> V2.t -> string -> unit
  val rect : ?color:int -> Rect.t -> unit
  val beep : unit -> unit
end = struct
  let pr = Printf.printf
  let frame = Rect.create (V2.v 1. 1.) (V2.v 80. 24.)
  let clear () = pr "\x1B[47m\x1B[2J"
  let flush () = pr "%!"
  let reset () = clear (); pr "\x1Bc"; flush ()
  let init () =
    pr "\x1B[H\x1B[7l\x1B[?25l"; clear (); flush ();
    at_exit (reset)

  let text ?(center = true) ?(color = 30) pos str =
    let x, y = V2.to_ints pos in
    let x = if center then x - (String.length str) / 2 else x in
    pr ("\x1B[%d;%df\x1B[47;%dm%s") y x color str

  let rect ?(color = 40) r =
    let (x, y) = V2.to_ints (Rect.o r) in
    let (w, h) = V2.to_ints (Rect.size r) in
    pr "\x1B[%dm" color;
    for y' = y to y + h - 1 do
      pr "\x1B[%d;%df" y' x; for i = 1 to w do pr " " done
    done

  let beep () = pr "\x07%!"
end

module Input : sig                              (* Keyboard and time events. *)
  val init : unit -> unit
  val time : float event                                      (* time event. *)
  val key : char event                                    (* keyboard event. *)
  val gather : unit -> unit
end = struct
  let init () =                        (* suppress input echo and buffering. *)
    let reset tattr () = Unix.tcsetattr Unix.stdin Unix.TCSAFLUSH tattr in
    let attr = Unix.tcgetattr Unix.stdin in
    let attr' = { attr with Unix.c_echo = false; c_icanon = false } in
    let quit _ = exit 0 in
    at_exit (reset attr);
    Unix.tcsetattr Unix.stdin Unix.TCSANOW attr';
    Sys.set_signal Sys.sigquit (Sys.Signal_handle quit);
    Sys.set_signal Sys.sigint (Sys.Signal_handle quit);
    Sys.set_signal Sys.sigfpe (Sys.Signal_handle quit)

  let time, send_time = E.create ()
  let key, send_key = E.create ()
  let gather () =                               (* updates primitive events. *)
    let c = " " in
    let i = Unix.stdin in
    let input_char i = ignore (Unix.read i c 0 1); c.[0] in
    let dt = 0.1 in
    while true do
      if Unix.select [i] [] [] dt = ([i], [], []) then send_key (input_char i);
      send_time (Unix.gettimeofday ());
    done
end

module Game : sig                              (* Game simulation and logic. *)
  type t
  val create : Rect.t -> float event -> [`Left | `Right ] event -> t
  val walls : t -> Rect.t
  val ball : t -> Rect.t signal
  val paddle : t -> Rect.t signal
  val bricks : t -> Rect.t list signal
  val brick_count : t -> int signal
  val collisions : t -> unit event
  val outcome : t -> [> `Game_over of int ] event
end = struct
  type t =
    { walls : Rect.t;
      ball : Rect.t signal;
      paddle : Rect.t signal;
      bricks : Rect.t list signal;
      brick_count : int signal;
      collisions : unit event }

  (* Collisions *)

  let ctime c r d n = Some (n, (r -. c) /. d)
  let cmin c r d n = if r <= c && d < 0. then ctime c r d n else None
  let cmax c r d n = if r >= c && d > 0. then ctime c r d n else None
  let cinter cmin cmax rmin rmax d n = match d with
  | d when d < 0. ->
      if rmax -. d < cmin then None else                    (* moving apart. *)
      if rmin -. d >= cmax then
        if rmin <= cmax then ctime cmax rmin d n else None
      else Some (V2.o, 0.)                         (* initially overlapping. *)
  | d when d > 0. ->
      if rmin -. d > cmax then None else                    (* moving apart. *)
      if rmax -. d <= cmin then
        if rmax >= cmin then ctime cmin rmax d (V2.neg n) else None
      else Some (V2.o, 0.)                         (* initially overlapping. *)
  | _ (* d = 0. *) ->
    if cmax < rmin || rmax < cmin then None else Some (V2.o, 0.)

  let crect c r d =                    (* r last moved by d relatively to c. *)
    let inter min max c r d n = cinter (min c) (max c) (min r) (max r) d n in
    match inter Rect.xmin Rect.xmax c r (V2.x d) V2.ex with
    | None -> None
    | Some (_, t as x) ->
        match inter Rect.ymin Rect.ymax c r (V2.y d) V2.ey with
        | None -> None
        | Some (_, t' as y) ->
            let _, t as c = if t > t' then x else y in
            if t = 0. then None else Some c

  (* Game objects *)

  let moving_rect pos size = S.map (fun pos -> Rect.create pos size) pos

  let ball walls dt collisions =
    let size = V2.v 2. 1. in
    let x0 = 0.5 *. (Rect.xmax walls -. V2.x size) in
    let p0 = V2.v x0 (0.5 *. Rect.ymax walls) in
    let v0 =
      let sign = if Random.bool () then -1. else 1. in
      let angle = (sign *. (10. +. Random.float 60.) *. 3.14) /. 180. in
      let speed = 18. +. Random.float 2. in
      V2.v (speed *. sin angle) (speed *. cos angle)
    in
    let v =
      let bounce (n, _) v = V2.sub v (V2.smul (2. *. V2.dot n v) n) in
      S.accum (E.map bounce collisions) v0
    in
    let dp = S.sample (fun dt v -> V2.smul dt v) dt v in
    let p =
      let pos p0 = S.fold V2.add p0 dp in
      let adjust (_, pc) = pos pc in                 (* visually sufficient. *)
      S.switch (S.hold ~eq:( == ) (pos p0) (E.map adjust collisions))
    in
    moving_rect p size, dp

  let walls walls (ball, dp) =
    let left = Rect.xmin walls in
    let right = Rect.xmax walls in
    let top = Rect.ymin walls in
    let collisions =
      let collide dp ball =
        let c = match cmin left (Rect.xmin ball) (V2.x dp) V2.ex with
        | Some _ as c -> c
        | None ->
            match cmax right (Rect.xmax ball) (V2.x dp) (V2.neg V2.ex) with
            | Some _ as c -> c
            | None -> cmin top (Rect.ymin ball) (V2.y dp) V2.ey
        in
        match c with
        | None -> None
        | Some (n, t) -> Some (n, V2.sub (Rect.o ball) (V2.smul t dp))
      in
      E.fmap (fun x -> x) (S.sample collide dp ball)
    in
    walls, collisions

  let paddle walls moves (ball, dp) =
    let speed = 4. in
    let size = V2.v 9. 1. in
    let xmin = Rect.xmin walls in
    let xmax = Rect.xmax walls -. (V2.x size) in
    let p0 = V2.v (0.5 *. xmax) (Rect.ymax walls -. 2.) in
    let control p = function
    | `Left ->
        let x' = V2.x p -. speed in
        if x' < xmin then V2.v xmin (V2.y p) else V2.v x' (V2.y p)
    | `Right ->
        let x' = V2.x p +. speed in
        if x' > xmax then V2.v xmax (V2.y p) else V2.v x' (V2.y p)
    in
    let paddle = moving_rect (S.fold control p0 moves) size in
    let collisions =
      let collide dp (ball, paddle) = match crect paddle ball dp with
      | None -> None
      | Some (n, t) -> Some (n, V2.sub (Rect.o ball) (V2.smul t dp))
      in
      E.fmap (fun x -> x) (S.sample collide dp (S.Pair.pair ball paddle))
    in
    paddle, collisions

  let bricks walls (ball, dp) =
    let bricks0 =
      let size = Rect.size walls in
      let w = V2.x size in
      let h = (V2.y size) /. 4. in                    (* use 1/4 for bricks. *)
      let bw, bh = (w /. 8.), h /. 3. in
      let x_count = truncate (w /. bw) in
      let y_count = truncate (h /. bh) in
      let acc = ref [] in
      for x = 0 to x_count - 1 do
        for y = 0 to y_count - 1 do
          let x = Rect.xmin walls +. (float x) *. bw in
          let y = Rect.ymin walls +. 2. *. bh +. (float y) *. bh in
          acc := Rect.create (V2.v x y) (V2.v bw bh) :: !acc
        done
      done;
      !acc
    in
    let define bricks =
      let cresult =
        let collide dp (ball, bricks) =
          let rec aux c acc bricks ball dp = match bricks with
          | [] -> c, List.rev acc
          | b :: bricks' -> match crect b ball dp with
          | None -> aux c (b :: acc) bricks' ball dp
          | c  -> aux c acc bricks' ball dp
          in
          match aux None [] bricks ball dp with
          | None, bl -> None, bl
          | Some (n, t), bl -> Some (n, V2.sub (Rect.o ball) (V2.smul t dp)),bl
        in
        S.sample collide dp (S.Pair.pair ball bricks)
      in
      let collisions = E.fmap (fun (c, _) -> c) cresult in
      let bricks_e = E.map (fun (_, bl) -> fun _ -> bl) cresult in
      let bricks' = S.accum bricks_e bricks0 in
      bricks', (bricks', collisions)
    in
    S.fix bricks0 define

  (* Game data structure, links game objects *)

  let create w dt moves =
    let define collisions =
      let ball = ball w dt collisions in
      let walls, wcollisions = walls w ball in
      let paddle, pcollisions = paddle w moves ball in
      let bricks, bcollisions = bricks w ball in
      let collisions' = E.select [pcollisions; wcollisions; bcollisions] in
      let g =
        { walls = walls;
          ball = S.dismiss collisions' Rect.empty (fst ball);
          paddle = paddle;
          bricks = bricks;
          brick_count = S.map List.length bricks;
          collisions = E.stamp collisions' () }
      in
      collisions', g
    in
    E.fix define

  let walls g = g.walls
  let ball g = g.ball
  let paddle g = g.paddle
  let bricks g = g.bricks
  let brick_count g = g.brick_count
  let collisions g = g.collisions
  let outcome g =                                     (* game outcome logic. *)
    let no_bricks = S.map (fun l -> l = 0) g.brick_count in
    let miss = S.map (fun b -> Rect.ymax b >= Rect.ymax g.walls) g.ball in
    let game_over = S.changes (S.Bool.( || ) no_bricks miss) in
    S.sample (fun _ l -> `Game_over l) game_over g.brick_count
end

module Render = struct
  let str = Printf.sprintf
  let str_bricks count = if count = 1 then "1 brick" else str "%d bricks" count

  let intro title_color =                        (* draws the splash screen. *)
    let x = 0.5 *. Rect.xmax Draw.frame in
    let y = 0.5 *. Rect.ymax Draw.frame in
    Draw.clear ();
    Draw.text ~color:title_color (V2.v x (y -. 2.)) "BREAKOUT";
    Draw.text ~color:30 (V2.v x y)
      "Hit 'a' and 'd' to move the paddle, 'q' to quit";
    Draw.text ~color:31 (V2.v x (y +. 2.)) "Hit spacebar to start the game";
    Draw.flush ()

  let game_init m =                              (* draws game init message. *)
    let x = 0.5 *. Rect.xmax Draw.frame in
    let y = 0.5 *. Rect.ymax Draw.frame in
    Draw.text ~color:31 (V2.v x (y +. 2.)) m;
    Draw.flush ()

  let game ball paddle bricks bcount =              (* draws the game state. *)
    let bl = V2.v (Rect.xmin Draw.frame) (Rect.ymax Draw.frame -. 1.) in
    Draw.clear ();
    List.iter (Draw.rect ~color:40) bricks;
    Draw.rect ~color:44 paddle;
    Draw.rect ~color:41 ball;
    Draw.text ~center:false ~color:30 bl (str "%s left" (str_bricks bcount));
    Draw.flush ()

  let game_over outcome =                     (* draws the game over screen. *)
    let x = 0.5 *. Rect.xmax Draw.frame in
    let y = 0.5 *. Rect.ymax Draw.frame in
    let outcome_msg =
      if outcome = 0 then "Congratulations, no bricks left" else
      str "%s left, you can do better" (str_bricks outcome)
    in
    Draw.text ~color:34 (V2.v x (y +. 2.)) "GAME OVER";
    Draw.text ~color:30 (V2.v x (y +. 4.)) outcome_msg;
    Draw.text ~color:31 (V2.v x (y +. 6.)) "Hit spacebar to start again";
    Draw.flush ()
end

module Ui : sig
  val init : unit -> unit event
end = struct
  let key k = E.fmap (fun c -> if c = k then Some () else None) Input.key
  let quit () = E.once (E.stamp (key 'q') `Quit)
  let new_game () = E.once (E.stamp (key ' ') `Game)

  let wait_until ?stop e = match stop with
  | Some s -> E.map (fun v -> s (); v) (E.once e)
  | None -> E.once e

  let intro () =
    let color_swap = E.stamp Input.time (fun c -> if c = 31 then 34 else 31) in
    let output = S.l1 Render.intro (S.accum color_swap 34) in
    let stop () = S.stop output in
    wait_until (E.select [quit (); new_game ()]) ~stop

  let game () =
    let run = S.hold false (E.once (E.stamp (key ' ') true)) in
    let moves =
      let move = function 'a' -> Some `Left | 'd' -> Some `Right | _ -> None in
      E.on run (E.fmap move Input.key)
    in
    let dt = E.on run (E.diff ( -. ) Input.time) in
    let g = Game.create Draw.frame dt moves in
    let outcome = Game.outcome g in
    let sound = E.map Draw.beep (Game.collisions g) in
    let output = S.l4 Render.game (Game.ball g) (Game.paddle g) (Game.bricks g)
        (Game.brick_count g)
    in
    let stop () = E.stop sound; S.stop output in
    Render.game_init "Hit spacebar to start the game";
    wait_until (E.select [quit (); outcome]) ~stop

  let game_over outcome =
    Render.game_over outcome;
    wait_until (E.select [quit (); new_game ()])

  let init () =
    let define ui =
      let display ui =
        Gc.full_major ();                           (* cleanup game objects. *)
        match ui with
        | `Intro -> intro ()
        | `Game -> game ()
        | `Game_over outcome -> game_over outcome
        | `Quit -> exit 0
      in
      let ui' = E.switch (display `Intro) (E.map display ui) in
      ui', ui'
    in
    E.stamp (E.fix define) ()
end

let main () =
  Random.self_init ();
  Log.init ();
  Draw.init ();
  Input.init ();
  let ui = Ui.init () in
  Input.gather ();
  ui

let ui = main ()                               (* keep a ref. to avoid g.c. *)

(*----------------------------------------------------------------------------
  Copyright (c) 2009 Daniel C. Bünzli
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are
  met:

  1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the
     distribution.

  3. Neither the name of Daniel C. Bünzli nor the names of
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  ---------------------------------------------------------------------------*)