/usr/include/rep/rep_lisp.h is in librep-dev 0.92.5-3build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | /* rep_lisp.h -- Data structures/objects for Lisp
Copyright (C) 1993, 1994 John Harper <john@dcs.warwick.ac.uk>
$Id$
This file is part of Jade.
Jade is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Jade is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jade; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA */
/* library-private definitions are in repint.h */
#ifndef REP_LISP_H
#define REP_LISP_H
#include <stdio.h>
/* Stringify X. Expands macros in X. */
#define rep_QUOTE(x) rep_QUOTE__(x)
#define rep_QUOTE__(x) #x
/* Concat two tokens. Expands macros in X and Y. */
#define rep_CONCAT(x, y) rep_CONCAT__(x, y)
#define rep_CONCAT__(x, y) x##y
/* Lisp values. */
/* A `repv' is a lisp value, perhaps a pointer to an object, but not a real
pointer; it's two lowest bits define its type. */
typedef unsigned rep_PTR_SIZED_INT repv;
/* The number of bits in the lisp value type. */
#define rep_VALUE_BITS rep_PTR_SIZED_INT_BITS
/* Get the integer constant X in the lisp value type */
#define rep_VALUE_CONST(x) rep_CONCAT(x, rep_PTR_SIZED_INT_SUFFIX)
/* Structure of Lisp objects and the pointers to them. */
/* Bit definitions for repv pointers. The lowest bit is always zero
except during GC. If bit one is set the object is a 30-bit signed
integer, with the data bits stored in the pointer as bits 2->31.
Otherwise (i.e. bit 1 of the pointer is clear), the value is a
pointer to a "cell"; all objects other than integers are represented
by various types of cells. Every cell has a repv as its first
element (called the car), the lowest bits of this define the actual
type of the cell.
If bit zero of the car is unset, the cell is a cons, a pair of two
values the car and the cdr (the GC mark bit of the cons is bit zero
of the cdr).
If bit zero of the car is set, then further type information is
stored in bits 1->5 of the car, with bit 5 used to denote statically
allocated objects and bit 7 the mark bit.
So there are 2^4 possible types of cells. This isn't enough, so bit
6 of the car is used to denote a ``cell16'' type -- a cell in which
bits 8->15 give the actual type. These cell16 types are allocated
dynamically.
Note that some assumptions are made about data object alignment. All
Lisp cells _must_ be aligned to four-byte boundaries. If using GNU
CC, we'll use the alignment attribute. Otherwise the rep_ALIGN macro
needs setting.. */
#define rep_VALUE_CONS_MARK_BIT 1
#define rep_VALUE_IS_INT 2
#define rep_VALUE_INT_SHIFT 2
#define rep_CELL_ALIGNMENT rep_PTR_SIZED_INT_SIZEOF
#if rep_CELL_ALIGNMENT <= rep_MALLOC_ALIGNMENT
/* Allocate SIZE bytes of memory, aligned to NORMAL_ALIGNMENT */
# define rep_ALLOC_CELL(n) rep_alloc(n)
/* Free something allocated by rep_ALLOC_CELL */
# define rep_FREE_CELL(x) rep_free(x)
#else
# error "Need an aligned memory allocator"
#endif
/* A ``null pointer'', i.e. an invalid object. This has the important
property of being a proper null pointer (i.e. (void *)0) when
converted to a pointer, i.e. rep_PTR(rep_NULL) == NULL. */
#define rep_NULL (0)
/* Align the variable or struct member D to the necessary cell alignment.
This is used like: ``rep_ALIGN_CELL(rep_cell foo) = ...''
The best examples are the uses for rep_subr and rep_xsubr below. */
#ifdef __GNUC__
# define rep_ALIGN_CELL(d) d __attribute__ ((aligned (rep_CELL_ALIGNMENT)))
#elif defined (__digital__) && defined (__unix__) && defined (__DECC)
# if rep_CELL_ALIGNMENT >= rep_PTR_SIZED_INT_SIZEOF
/* "the C compiler aligns an int (32 bits) on a 4-byte boundary and
a long (64 bits) on an 8-byte boundary" (Tru64 Programmer's Guide) */
# define rep_ALIGN_CELL(d) d
# else
# error "You need to fix alignment for Tru64"
# endif
#else
/* # warning Lets hope your compiler aligns to 4 byte boundaries.. */
# define rep_ALIGN_CELL(d) d
#endif
/* Is repv V a cell type? */
#define rep_CELLP(v) (((v) & rep_VALUE_IS_INT) == 0)
/* Is repv V a fixnum (= an integer which fits in a Lisp poniter)? */
#define rep_INTP(v) (!rep_CELLP(v))
/* Convert a repv into a signed integer. */
#define rep_INT(v) (((rep_PTR_SIZED_INT)(v)) \
>> rep_VALUE_INT_SHIFT)
/* Convert a signed integer into a repv. */
#define rep_MAKE_INT(x) (((x) << rep_VALUE_INT_SHIFT) \
| rep_VALUE_IS_INT)
/* Bounds of the integer type */
#define rep_LISP_INT_BITS (rep_VALUE_BITS - rep_VALUE_INT_SHIFT)
#define rep_LISP_MAX_INT ((rep_VALUE_CONST(1) \
<< (rep_LISP_INT_BITS - 1)) - 1)
#define rep_LISP_MIN_INT (-(rep_VALUE_CONST(1) \
<< (rep_LISP_INT_BITS - 1)))
/* backwards compatibility */
#define rep_MAKE_LONG_INT(x) rep_make_long_int(x)
#define rep_LONG_INT(v) rep_get_long_int(v)
#define rep_LONG_INTP(v) \
(rep_INTEGERP(v) \
|| (rep_CONSP(v) && rep_INTP(rep_CAR(v)) && rep_INTP(rep_CDR(v))))
/* Structure of a cell */
typedef struct {
/* Low bits of this value define type of the cell. See below. All
other bits (8->31) are available */
repv car;
/* Data follows, in real objects. */
} rep_cell;
/* If bit zero is set in the car of a cell, bits 1->4 of the car are
type data, bit 5 denotes a cell16 type, bit 6 is set if the object
is allocated statically, bit 7 is the GC mark bit. This means a
maximum of 2^3, i.e. 16, cell8 types.
cell16 types have eight extra type bits, bits 8->15, this gives 256
dynamically allocated type codes: [256 k + 0x21 | k <- [0..255]]. */
#define rep_CELL_IS_8 0x01
#define rep_CELL_IS_16 0x20
#define rep_CELL_STATIC_BIT 0x40
#define rep_CELL_MARK_BIT 0x80
#define rep_CELL8_TYPE_MASK 0x3f
#define rep_CELL8_TYPE_BITS 8
#define rep_CELL16_TYPE_MASK 0xff21 /* is8 and is16 bits set */
#define rep_CELL16_TYPE_SHIFT 8
#define rep_CELL16_TYPE_BITS 16
/* Build a `rep_cell *' pointer out of a repv of a normal type */
#define rep_PTR(v) ((rep_cell *)(v))
/* Build a repv out of a pointer to a Lisp_Normal object */
#define rep_VAL(x) ((repv)(x))
/* Is V of cell8 type? */
#define rep_CELL8P(v) (rep_PTR(v)->car & rep_CELL_IS_8)
/* Is V a cons? */
#define rep_CELL_CONS_P(v) (!rep_CELL8P(v))
/* Is V statically allocated? */
#define rep_CELL_STATIC_P(v) (rep_PTR(v)->car & rep_CELL_STATIC_BIT)
/* Is V not an integer or cons? */
#define rep_CELL8_TYPE(v) (rep_PTR(v)->car & rep_CELL8_TYPE_MASK)
/* Get the actual cell8 type of V to T */
#define rep_SET_CELL8_TYPE(v, t) \
(rep_PTR(v)->car = (rep_PTR(v)->car & rep_CELL8_TYPE_MASK) | (t))
/* Is V of cell16 type? */
#define rep_CELL16P(v) (rep_PTR(v)->car & rep_CELL_IS_16)
/* Get the actual cell16 type of V */
#define rep_CELL16_TYPE(v) (rep_PTR(v)->car & rep_CELL16_TYPE_MASK)
/* Set the actual cell16 type of V to T */
#define rep_SET_CELL16_TYPE(v, t) \
(rep_PTR(v)->car = (rep_PTR(v)->car & rep_CELL16_TYPE_MASK) | (t))
/* Structure of a cons cell, the only non-cell8 ptr type */
typedef struct {
repv car;
repv cdr; /* low bit is GC mark */
} rep_cons;
#define rep_CONSP(v) (rep_CELLP(v) && rep_CELL_CONS_P(v))
/* Build a repv out of a pointer to a rep_cons object */
#define rep_CONS_VAL(x) rep_VAL(x)
/* Get a pointer to a cons cell from a repv. */
#define rep_CONS(v) ((rep_cons *) rep_PTR(v))
/* Get the car or cdr from a cons repv. */
#define rep_CAR(v) (rep_CONS(v)->car)
#define rep_CDR(v) (rep_CONS(v)->cdr)
#define rep_CDRLOC(v) (&(rep_CONS(v)->cdr))
/* Get the cdr when GC is in progress. */
#define rep_GCDR(v) (rep_CDR(v) & ~rep_VALUE_CONS_MARK_BIT)
/* True if cons cell V is mutable (i.e. not read-only). */
#define rep_CONS_WRITABLE_P(v) \
(! (rep_CONS(v) >= rep_dumped_cons_start \
&& rep_CONS(v) < rep_dumped_cons_end))
/* Type data */
/* Information about each type */
typedef struct rep_type_struct {
struct rep_type_struct *next;
char *name;
unsigned int code;
/* Compares two values, rc is similar to strcmp() */
int (*compare)(repv val1, repv val2);
/* Prints a textual representation of the object, not necessarily in
a read'able format */
void (*princ)(repv stream, repv obj);
/* Prints a textual representation of the object, if possible in
a read'able format */
void (*print)(repv stream, repv obj);
/* When non-null, a function that should be called during the
sweep phase of garbage collection. */
void (*sweep)(void);
/* When non-null, a function to mark OBJ and all objects
it references. */
void (*mark)(repv obj);
/* When called, should mark any objects that must persist across
the GC, no matter what. */
void (*mark_type)(void);
/* When non-null, functions called for the stream OBJ. */
int (*getc)(repv obj);
int (*ungetc)(repv obj, int c);
int (*putc)(repv obj, int c);
int (*puts)(repv obj, void *data, int length, rep_bool lisp_obj_p);
/* When non-null, a function to ``bind'' to OBJ temporarily,
returning some handle for later unbinding. */
repv (*bind)(repv obj);
/* When non-null, a function to ``unbind'' OBJ, the result of
the earlier bind call. */
void (*unbind)(repv obj);
} rep_type;
/* Each type of Lisp object has a type code associated with it.
Note how non-cons cells are given odd values, so that the
rep_CELL_IS_8 bit doesn't have to be masked out. */
#define rep_Cons 0x00 /* made up */
#define rep_Symbol 0x01
#define rep_Int 0x02 /* made up */
#define rep_Vector 0x03
#define rep_String 0x05
#define rep_Compiled 0x07
#define rep_Void 0x09
#define rep_Reserved 0x0b
#define rep_Number 0x0d
#define rep_SF 0x0f /* Special form */
#define rep_Subr0 0x11
#define rep_Subr1 0x13
#define rep_Subr2 0x15
#define rep_Subr3 0x17
#define rep_Subr4 0x19
#define rep_Subr5 0x1b
#define rep_SubrN 0x1d
#define rep_Funarg 0x1f /* Closure */
/* Assuming that V is a cell, return the type code */
#define rep_CELL_TYPE(v) (rep_CONSP(v) ? rep_Cons \
: !rep_CELL16P(v) ? rep_CELL8_TYPE(v) \
: rep_CELL16_TYPE(v))
/* Return a type code given a repv */
#define rep_TYPE(v) (rep_INTP(v) ? rep_Int : rep_CELL_TYPE(v))
/* true if V is of type T (T must be a cell8 type) */
#define rep_CELL8_TYPEP(v, t) \
(rep_CELLP(v) && rep_CELL8_TYPE(v) == (t))
#define rep_CELL16_TYPEP(v, t) \
(rep_CELLP(v) && rep_CELL16_TYPE(v) == (t))
/* true if V is of type T. */
#define rep_TYPEP(v, t) (rep_TYPE(v) == t)
/* tuples, cells containing two values */
typedef struct {
repv car;
repv a, b;
} rep_tuple;
#define rep_TUPLE(v) ((rep_tuple *) rep_PTR (v))
/* Numbers (private defs in numbers.c) */
/* Is V a non-fixnum number? */
#define rep_NUMBERP(v) rep_CELL8_TYPEP(v, rep_Number)
/* Is V numeric? */
#define rep_NUMERICP(v) (rep_INTP(v) || rep_NUMBERP(v))
/* bits 8-9 of car define number type (except when on freelist) */
typedef rep_cell rep_number;
/* these are in order of promotion */
#define rep_NUMBER_INT 0 /* faked */
#define rep_NUMBER_BIGNUM 0x100
#define rep_NUMBER_RATIONAL 0x200
#define rep_NUMBER_FLOAT 0x400
#define rep_NUMBER_TYPE(v) (((rep_number *)rep_PTR(v))->car & 0x700)
#define rep_NUMBER_BIGNUM_P(v) (rep_NUMBER_TYPE(v) & rep_NUMBER_BIGNUM)
#define rep_NUMBER_RATIONAL_P(v) (rep_NUMBER_TYPE(v) & rep_NUMBER_RATIONAL)
#define rep_NUMBER_FLOAT_P(v) (rep_NUMBER_TYPE(v) & rep_NUMBER_FLOAT)
#define rep_NUMERIC_TYPE(v) \
(rep_INTP(v) ? rep_NUMBER_INT : rep_NUMBER_TYPE(v))
#define rep_INTEGERP(v) \
(rep_INTP(v) || (rep_NUMBERP(v) && rep_NUMBER_BIGNUM_P(v)))
/* Strings */
typedef struct rep_string_struct {
/* Bits 0->7 are standard cell8 defines. Bits 8->31 store the length
of the string. This means that strings can't contain more than
2^24-1 bytes (thats about 16.7MB) */
repv car;
/* Pointer to the (zero-terminated) characters */
char *data;
} rep_string;
#define rep_STRING_LEN_SHIFT 8
#define rep_MAX_STRING \
((rep_VALUE_CONST(1) << (rep_VALUE_BITS - rep_STRING_LEN_SHIFT)) - 1)
#define rep_STRINGP(v) rep_CELL8_TYPEP(v, rep_String)
#define rep_STRING(v) ((rep_string *) rep_PTR(v))
#define rep_STRING_LEN(v) (rep_STRING(v)->car >> rep_STRING_LEN_SHIFT)
#define rep_MAKE_STRING_CAR(len) (((len) << rep_STRING_LEN_SHIFT) | rep_String)
/* True if this string may be written to; generally static strings
are made from C string-constants and usually in read-only storage. */
#define rep_STRING_WRITABLE_P(s) (!rep_CELL_STATIC_P(s))
/* Define a variable V, containing a static string S. This must be cast
to a repv via the rep_VAL() macro when using. */
#define DEFSTRING(v, s) \
rep_ALIGN_CELL(static const rep_string v) = { \
((sizeof(s) - 1) << rep_STRING_LEN_SHIFT) \
| rep_CELL_STATIC_BIT | rep_String, \
(char *)s \
}
#define rep_STR(v) (rep_STRING(v)->data)
/* Use this to get a newline into a DEFSTRING */
#define rep_DS_NL "\n"
/* Symbols */
/* symbol object, actual allocated as a tuple */
typedef struct {
repv car; /* bits 8->11 are flags */
repv next; /* next symbol in rep_obarray bucket */
repv name;
} rep_symbol;
#define rep_SF_KEYWORD (1 << (rep_CELL8_TYPE_BITS + 0))
/* Means that the symbol's value may be in some form of local storage,
if so then that occurrence takes precedence. */
#define rep_SF_LOCAL (1 << (rep_CELL8_TYPE_BITS + 1))
/* This means that setting the value of the symbol always sets the
local value, even if one doesn't already exist. */
#define rep_SF_SET_LOCAL (1 << (rep_CELL8_TYPE_BITS + 2))
/* When a function is evaluated whose symbol has this bit set, the
next evaluated form will invoke the Lisp debugger. */
#define rep_SF_DEBUG (1 << (rep_CELL8_TYPE_BITS + 3))
/* Dynamically bound */
#define rep_SF_SPECIAL (1 << (rep_CELL8_TYPE_BITS + 4))
/* A special, but was first set from an environment in which specials
can't normally be accessed; if the symbol is later defvar'd its
original value will be overwritten. */
#define rep_SF_WEAK (1 << (rep_CELL8_TYPE_BITS + 5))
/* A variable that was weak, but has been modified via defvar from an
unrestricted special environment */
#define rep_SF_WEAK_MOD (1 << (rep_CELL8_TYPE_BITS + 6))
/* Set when the variable has been defvar'd */
#define rep_SF_DEFVAR (1 << (rep_CELL8_TYPE_BITS + 7))
#define rep_SF_LITERAL (1 << (rep_CELL8_TYPE_BITS + 8))
#define rep_SYM(v) ((rep_symbol *)rep_PTR(v))
#define rep_SYMBOLP(v) rep_CELL8_TYPEP(v, rep_Symbol)
#define rep_NILP(v) ((v) == Qnil)
#define rep_LISTP(v) (rep_NILP(v) || rep_CONSP(v))
#define rep_KEYWORDP(v) (rep_SYMBOLP(v) \
&& (rep_SYM(v)->car & rep_SF_KEYWORD) != 0)
#define rep_SYMBOL_LITERAL_P(v) ((rep_SYM(v)->car & rep_SF_LITERAL) != 0)
/* Vectors */
typedef struct rep_vector_struct {
repv car; /* size is bits 8->31 */
struct rep_vector_struct *next;
repv array[1];
} rep_vector;
/* Bytes to allocate for S objects */
#define rep_VECT_SIZE(s) ((sizeof(repv) * ((s)-1)) + sizeof(rep_vector))
#define rep_VECT(v) ((rep_vector *)rep_PTR(v))
#define rep_VECTI(v,i) (rep_VECT(v)->array[(i)])
#define rep_VECT_LEN(v) (rep_VECT(v)->car >> 8)
#define rep_SET_VECT_LEN(v,l) (rep_VECT(v)->car = ((l) << 8 | rep_Vector))
#define rep_VECTORP(v) rep_CELL8_TYPEP(v, rep_Vector)
#define rep_VECTOR_WRITABLE_P(v) (!rep_CELL_STATIC_P(v))
/* Compiled Lisp functions; this is a vector. Some of these definitions
are probably hard coded into lispmach.c */
#define rep_COMPILEDP(v) rep_CELL8_TYPEP(v, rep_Compiled)
#define rep_COMPILED(v) ((rep_vector *)rep_PTR(v))
/* First elt is byte-code string */
#define rep_COMPILED_CODE(v) rep_VECTI(v, 0)
/* Second is constant vector */
#define rep_COMPILED_CONSTANTS(v) rep_VECTI(v, 1)
/* Third is an (opaque) integer: memory requirements */
#define rep_COMPILED_STACK(v) rep_VECTI(v, 2)
#define rep_COMPILED_MIN_SLOTS 3
/* Optional fifth element is documentation. */
#define rep_COMPILED_DOC(v) ((rep_VECT_LEN(v) >= 4) \
? rep_VECTI(v, 3) : Qnil)
/* Optional sixth element is interactive specification. */
#define rep_COMPILED_INTERACTIVE(v) ((rep_VECT_LEN(v) >= 5) \
? rep_VECTI(v, 4) : Qnil)
/* Files */
/* A file object. */
typedef struct rep_file_struct {
repv car; /* single flag at bit 16 */
struct rep_file_struct *next;
/* Name as user sees it */
repv name;
/* Function to call to handle file operations,
or t for file in local fs */
repv handler;
/* Data for handler's use; for local files, this is the
name of the file opened in the local fs. */
repv handler_data;
/* For local files, a buffered file handle; for others some sort
of stream. */
union {
FILE *fh;
repv stream;
} file;
/* For input streams */
int line_number;
} rep_file;
/* When this bit is set in flags, the file handle is never fclose()'d,
i.e. this file points to something like stdin. */
#define rep_LFF_DONT_CLOSE (1 << (rep_CELL16_TYPE_BITS + 0))
#define rep_LFF_BOGUS_LINE_NUMBER (1 << (rep_CELL16_TYPE_BITS + 1))
#define rep_LFF_SILENT_ERRORS (1 << (rep_CELL16_TYPE_BITS + 2))
#define rep_FILE(v) ((rep_file *)rep_PTR(v))
#define rep_FILEP(v) rep_CELL16_TYPEP(v, rep_file_type)
#define rep_LOCAL_FILE_P(v) (rep_FILE(v)->handler == Qt)
/* Built-in subroutines */
/* Calling conventions are straightforward, returned value is result
of function. But returning rep_NULL signifies some kind of abnormal
exit (i.e. an error or throw, or ..?), should be treated as
rep_INTERRUPTP defined below is */
/* C subroutine, can take from zero to five arguments.
* (Teika writes) it seems that `subr' lisp object is cast into
* pointer to both struct rep_subr and rep_xsubr, depending on the need,
* so they have to have the (almost) same members.
*/
typedef struct {
repv car;
union {
repv (*fun0)(void);
repv (*fun1)(repv);
repv (*fun2)(repv, repv);
repv (*fun3)(repv, repv, repv);
repv (*fun4)(repv, repv, repv, repv);
repv (*fun5)(repv, repv, repv, repv, repv);
repv (*funv)(int, repv *);
} fun;
repv name;
repv int_spec;
repv structure;
} rep_subr;
typedef struct {
repv car;
repv (*fun)();
repv name;
repv int_spec; /* put this in plist? */
repv structure;
} rep_xsubr;
/* If set in rep_SubrN types, it'll be passed a vector of args,
instead of a list */
#define rep_SUBR_VEC (1 << (rep_CELL8_TYPE_BITS + 0))
#define rep_SUBR_VEC_P(v) (rep_SUBR(v)->car & rep_SUBR_VEC)
#define rep_SubrV (rep_SubrN | rep_SUBR_VEC)
#define rep_XSUBR(v) ((rep_xsubr *) rep_PTR(v))
#define rep_SUBR(v) ((rep_subr *) rep_PTR(v))
#define rep_SUBR0FUN(v) (rep_SUBR(v)->fun.fun0)
#define rep_SUBR1FUN(v) (rep_SUBR(v)->fun.fun1)
#define rep_SUBR2FUN(v) (rep_SUBR(v)->fun.fun2)
#define rep_SUBR3FUN(v) (rep_SUBR(v)->fun.fun3)
#define rep_SUBR4FUN(v) (rep_SUBR(v)->fun.fun4)
#define rep_SUBR5FUN(v) (rep_SUBR(v)->fun.fun5)
#define rep_SUBRNFUN(v) (rep_SUBR(v)->fun.fun1)
#define rep_SUBRVFUN(v) (rep_SUBR(v)->fun.funv)
#define rep_SFFUN(v) (rep_SUBR(v)->fun.fun2)
/* Closures */
typedef struct rep_funarg_struct {
repv car;
repv fun;
repv name;
repv env;
repv structure;
} rep_funarg;
#define rep_FUNARG(v) ((rep_funarg *)rep_PTR(v))
#define rep_FUNARGP(v) (rep_CELL8_TYPEP(v, rep_Funarg))
#define rep_FUNARG_WRITABLE_P(v) (!rep_CELL_STATIC_P(v))
/* Guardians */
#define rep_GUARDIAN(v) ((rep_guardian *) rep_PTR(v))
#define rep_GUARDIANP(v) rep_CELL16_TYPEP(v, rep_guardian_type)
/* Other definitions */
/* Macros for other types */
#define rep_VOIDP(v) rep_CELL8_TYPEP(v, rep_Void)
/* Building lists */
#define rep_LIST_1(v1) Fcons(v1, Qnil)
#define rep_LIST_2(v1,v2) Fcons(v1, rep_LIST_1(v2))
#define rep_LIST_3(v1,v2,v3) Fcons(v1, rep_LIST_2(v2, v3))
#define rep_LIST_4(v1,v2,v3,v4) Fcons(v1, rep_LIST_3(v2, v3, v4))
#define rep_LIST_5(v1,v2,v3,v4,v5) Fcons(v1, rep_LIST_4(v2, v3, v4, v5))
#define rep_CAAR(obj) rep_CAR (rep_CAR (obj))
#define rep_CDAR(obj) rep_CDR (rep_CAR (obj))
#define rep_CADR(obj) rep_CAR (rep_CDR (obj))
#define rep_CDDR(obj) rep_CDR (rep_CDR (obj))
#define rep_CAAAR(obj) rep_CAR (rep_CAR (rep_CAR (obj)))
#define rep_CDAAR(obj) rep_CDR (rep_CAR (rep_CAR (obj)))
#define rep_CADAR(obj) rep_CAR (rep_CDR (rep_CAR (obj)))
#define rep_CDDAR(obj) rep_CDR (rep_CDR (rep_CAR (obj)))
#define rep_CAADR(obj) rep_CAR (rep_CAR (rep_CDR (obj)))
#define rep_CDADR(obj) rep_CDR (rep_CAR (rep_CDR (obj)))
#define rep_CADDR(obj) rep_CAR (rep_CDR (rep_CDR (obj)))
#define rep_CDDDR(obj) rep_CDR (rep_CDR (rep_CDR (obj)))
#define rep_CAAAAR(obj) rep_CAR (rep_CAR (rep_CAR (rep_CAR (obj))))
#define rep_CDAAAR(obj) rep_CDR (rep_CAR (rep_CAR (rep_CAR (obj))))
#define rep_CADAAR(obj) rep_CAR (rep_CDR (rep_CAR (rep_CAR (obj))))
#define rep_CDDAAR(obj) rep_CDR (rep_CDR (rep_CAR (rep_CAR (obj))))
#define rep_CAADAR(obj) rep_CAR (rep_CAR (rep_CDR (rep_CAR (obj))))
#define rep_CDADAR(obj) rep_CDR (rep_CAR (rep_CDR (rep_CAR (obj))))
#define rep_CADDAR(obj) rep_CAR (rep_CDR (rep_CDR (rep_CAR (obj))))
#define rep_CDDDAR(obj) rep_CDR (rep_CDR (rep_CDR (rep_CAR (obj))))
#define rep_CAAADR(obj) rep_CAR (rep_CAR (rep_CAR (rep_CDR (obj))))
#define rep_CDAADR(obj) rep_CDR (rep_CAR (rep_CAR (rep_CDR (obj))))
#define rep_CADADR(obj) rep_CAR (rep_CDR (rep_CAR (rep_CDR (obj))))
#define rep_CDDADR(obj) rep_CDR (rep_CDR (rep_CAR (rep_CDR (obj))))
#define rep_CAADDR(obj) rep_CAR (rep_CAR (rep_CDR (rep_CDR (obj))))
#define rep_CDADDR(obj) rep_CDR (rep_CAR (rep_CDR (rep_CDR (obj))))
#define rep_CADDDR(obj) rep_CAR (rep_CDR (rep_CDR (rep_CDR (obj))))
#define rep_CDDDDR(obj) rep_CDR (rep_CDR (rep_CDR (rep_CDR (obj))))
/* Garbage collection definitions */
/* gc macros for cell8/16 values */
#define rep_GC_CELL_MARKEDP(v) (rep_PTR(v)->car & rep_CELL_MARK_BIT)
#define rep_GC_SET_CELL(v) (rep_PTR(v)->car |= rep_CELL_MARK_BIT)
#define rep_GC_CLR_CELL(v) (rep_PTR(v)->car &= ~rep_CELL_MARK_BIT)
/* gc macros for cons values */
#define rep_GC_CONS_MARKEDP(v) (rep_CDR(v) & rep_VALUE_CONS_MARK_BIT)
#define rep_GC_SET_CONS(v) (rep_CDR(v) |= rep_VALUE_CONS_MARK_BIT)
#define rep_GC_CLR_CONS(v) (rep_CDR(v) &= ~rep_VALUE_CONS_MARK_BIT)
/* True when cell V has been marked. */
#define rep_GC_MARKEDP(v) \
(rep_CELL_CONS_P(v) ? rep_GC_CONS_MARKEDP(v) : rep_GC_CELL_MARKEDP(v))
/* Set the mark bit of cell V. */
#define rep_GC_SET(v) \
do { \
if(rep_CELLP(v)) \
rep_GC_SET_CELL(v); \
else \
rep_GC_SET_CONS(v); \
} while(0)
/* Clear the mark bit of cell V. */
#define rep_GC_CLR(v) \
do { \
if(rep_CELLP(v)) \
rep_GC_CLR_CELL(v); \
else \
rep_GC_CLR_CONS(v); \
} while(0)
/* Recursively mark object V. */
#define rep_MARKVAL(v) \
do { \
if(v != 0 && !rep_INTP(v) && !rep_GC_MARKEDP(v)) \
rep_mark_value(v); \
} while(0)
/* A stack of dynamic GC roots, i.e. objects to start marking from. */
typedef struct rep_gc_root {
repv *ptr;
struct rep_gc_root *next;
} rep_GC_root;
typedef struct rep_gc_n_roots {
repv *first;
int count;
struct rep_gc_n_roots *next;
} rep_GC_n_roots;
/* Push a root to VAL using ROOT as storage (ROOT is rep_GC_root type) */
#define rep_PUSHGC(root, val) \
do { \
(root).ptr = &(val); \
(root).next = rep_gc_root_stack; \
rep_gc_root_stack = &(root); \
} while(0)
/* Push a root to N values starting at PTR using ROOT as storage
(ROOT is rep_GC_n_roots type) */
#define rep_PUSHGCN(root, ptr, n) \
do { \
(root).first = (ptr); \
(root).count = (n); \
(root).next = rep_gc_n_roots_stack; \
rep_gc_n_roots_stack = &(root); \
} while(0)
#if !defined (rep_PARANOID_GC)
# define rep_POPGC (rep_gc_root_stack = rep_gc_root_stack->next)
# define rep_POPGCN (rep_gc_n_roots_stack = rep_gc_n_roots_stack->next)
#else
/* Check that gc roots are popped when they should have been;
assumes downwards growing stack */
# if defined (__GNUC__) && defined (sparc)
# define rep_get_sp(var) asm ("mov %%sp, %0" : "=r" (var))
# else
# error "don't know how to get stack ptr on this arch, undef rep_PARANOID_GC"
# endif
#define rep_CHECK_GC(root) \
char *sp; rep_get_sp(sp); \
if (sp > (char *) root) \
abort ();
# define rep_POPGC \
do { \
rep_CHECK_GC(rep_gc_root_stack) \
rep_gc_root_stack = rep_gc_root_stack->next; \
} while (0)
# define rep_POPGCN \
do { \
rep_CHECK_GC(rep_gc_n_roots_stack) \
rep_gc_n_roots_stack = rep_gc_n_roots_stack->next; \
} while (0)
#endif
/* Macros for declaring functions */
/* Define a function named NAME (a string), whose function body will
be called FSYM, whose rep_subr will be called SSYM, with argument
list ARGS, of type code TYPE. */
#define DEFUN(name,fsym,ssym,args,type) \
DEFSTRING(rep_CONCAT(ssym, __name), name); \
extern repv fsym args; \
rep_ALIGN_CELL(rep_xsubr ssym) = { type, (repv (*)()) fsym, \
rep_VAL(&rep_CONCAT(ssym, __name)), \
rep_NULL, rep_NULL }; \
repv fsym args
/* Same as above but with an extra arg -- an interactive-spec string. */
#define DEFUN_INT(name,fsym,ssym,args,type,interactive) \
DEFSTRING(rep_CONCAT(ssym, __name), name); \
DEFSTRING(rep_CONCAT(ssym, __int), interactive); \
extern repv fsym args; \
rep_ALIGN_CELL(rep_xsubr ssym) = { type, (repv (*)()) fsym, \
rep_VAL(&rep_CONCAT(ssym, __name)), \
rep_VAL(&rep_CONCAT(ssym, __int)), \
rep_NULL}; \
repv fsym args
/* Add a subroutine */
#define rep_ADD_SUBR(subr) rep_add_subr(&subr, rep_TRUE)
/* Add a non-exported subroutine */
#define rep_ADD_INTERNAL_SUBR(subr) rep_add_subr(&subr, rep_FALSE)
/* Add an interactive subroutine */
#define rep_ADD_SUBR_INT(subr) rep_add_subr(&subr, rep_TRUE)
/* Declare a symbol stored in variable QX. */
#define DEFSYM(x, name) \
repv Q ## x; DEFSTRING(str_ ## x, name)
/* Intern a symbol stored in QX, whose name (a lisp string) is stored
in str_X (i.e. declared with DEFSYM) */
#define rep_INTERN(x) rep_intern_static(& Q ## x, rep_VAL(& str_ ## x))
/* Same as above, but also marks the variable as dynamically scoped */
#define rep_INTERN_SPECIAL(x) \
do { \
rep_intern_static (& Q ## x, rep_VAL(& str_ ## x)); \
Fmake_variable_special (Q ## x); \
rep_SYM(Q ## x)->car |= rep_SF_DEFVAR; \
} while (0)
/* Add an error string called err_X for symbol stored in QX */
#define rep_ERROR(x) \
Fput(Q ## x, Qerror_message, rep_VAL(& err_ ## x))
/* Macros for ensuring an object is of a certain type i.e. to ensure
first arg `foo' is a string, rep_DECLARE1(foo, rep_STRINGP); */
#define rep_DECLARE(n,x,e) \
do { \
if(! (e)) \
{ \
rep_signal_arg_error(x, n); \
return rep_NULL; \
} \
} while(0)
#define rep_DECLARE1(x,t) rep_DECLARE(1,x,t(x))
#define rep_DECLARE2(x,t) rep_DECLARE(2,x,t(x))
#define rep_DECLARE3(x,t) rep_DECLARE(3,x,t(x))
#define rep_DECLARE4(x,t) rep_DECLARE(4,x,t(x))
#define rep_DECLARE5(x,t) rep_DECLARE(5,x,t(x))
#define rep_DECLARE1_OPT(x,t) rep_DECLARE(1, x, (x) == Qnil || t(x))
#define rep_DECLARE2_OPT(x,t) rep_DECLARE(2, x, (x) == Qnil || t(x))
#define rep_DECLARE3_OPT(x,t) rep_DECLARE(3, x, (x) == Qnil || t(x))
#define rep_DECLARE4_OPT(x,t) rep_DECLARE(4, x, (x) == Qnil || t(x))
#define rep_DECLARE5_OPT(x,t) rep_DECLARE(5, x, (x) == Qnil || t(x))
/* Macros for interrupt handling */
#define rep_MAY_YIELD \
do { \
if (rep_pending_thread_yield && rep_thread_lock == 0) \
Fthread_yield (); \
} while (0)
#define rep_FORBID rep_thread_lock++
#define rep_PERMIT rep_thread_lock--
#define rep_PREEMPTABLE_P (rep_thread_lock <= 0)
/* rep_TEST_INT is called before testing rep_INTERRUPTP, if necessary the
target operating system will define it to be something useful.
There's also a variant rep_TEST_INT_SLOW that should be used by code that
only checks a few times or less a second */
#ifndef rep_TEST_INT
# define rep_TEST_INT \
do { \
if(++rep_test_int_counter > rep_test_int_period) { \
(*rep_test_int_fun)(); \
rep_test_int_counter = 0; \
rep_pending_thread_yield = rep_TRUE; \
} \
} while(0)
# define rep_TEST_INT_SLOW \
do { \
(*rep_test_int_fun)(); \
rep_test_int_counter = 0; \
if (!rep_INTERRUPTP) \
Fthread_yield (); \
} while(0)
#else /* !rep_TEST_INT */
# ifndef rep_TEST_INT_SLOW
# define rep_TEST_INT_SLOW rep_TEST_INT
# endif
#endif
/* True when an interrupt has occurred; this means that the function
should exit as soon as possible, returning rep_NULL. */
#define rep_INTERRUPTP (rep_throw_value != rep_NULL)
/* End-of-list / false value
The canonical method of getting '() is to access the `Qnil' variable.
But we know that that currently points to `rep_eol_datum'. So avoid
lots of global variable referencing by hardcoding that value for
library-internal code. */
extern repv Qnil;
#ifdef rep_INTERNAL
extern rep_tuple rep_eol_datum;
# ifdef rep_DEFINE_QNIL
repv Qnil = rep_VAL (&rep_eol_datum);
# endif
/* OS X has problems with this */
# ifndef __APPLE__
# define Qnil rep_VAL(&rep_eol_datum)
# endif
#endif
/* Storing timestamps */
#define rep_MAKE_TIME(time) \
Fcons(rep_MAKE_INT(time / 86400), rep_MAKE_INT(time % 86400))
#define rep_GET_TIME(time) \
(rep_INT(rep_CAR(time)) * 86400 + rep_INT(rep_CDR(time)))
#define rep_TIMEP(v) rep_CONSP(v)
#endif /* REP_LISP_H */
|