This file is indexed.

/usr/include/rheolef/disarray_mpi.icc is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

# include "rheolef/config.h"
# ifdef _RHEOLEF_HAVE_MPI

# include "rheolef/disarray.h"

# include "rheolef/mpi_assembly_begin.h"
# include "rheolef/mpi_assembly_end.h"
# include "rheolef/mpi_scatter_init.h"
# include "rheolef/mpi_scatter_begin.h"
# include "rheolef/mpi_scatter_end.h"
# include "rheolef/load_chunk.h"
# include "rheolef/disarray_store.h"
# include "rheolef/rheostream.h"

namespace rheolef {
// ----------------------------------------------------------------------------
// allocators
// ----------------------------------------------------------------------------
template <class T, class A>
disarray_rep<T,distributed,A>::disarray_rep (const disarray_rep<T,distributed,A>& x)
  : base(x),
    _stash(),
    _send(),
    _receive(),
    _receive_max_size(0),
    _ext_x(x._ext_x)
{
    assert_macro(x._stash.size() == 0 && 
		 x._send.data.size() == 0 && 
		 x._receive.data.size() == 0, 
		 "copy during assembly phase: should not be done");
}
template <class T, class A>
disarray_rep<T,distributed,A>::disarray_rep (
        const distributor& ownership,
        const T&  init_val,
        const A&  alloc)
  : base(ownership, init_val,alloc),
    _stash(),
    _send(),
    _receive(),
    _receive_max_size(0),
    _ext_x()
{
}
template <class T, class A>
void
disarray_rep<T,distributed,A>::resize (
        const distributor& ownership,
        const T&  init_val)
{
    base::resize(ownership, init_val);
    _stash.clear();
    _send.waits.clear();
    _send.data.clear();
    _receive.waits.clear();
    _receive.data.clear();
    _receive_max_size = 0;
}
// ===============================================================
// set dis_entry and assembly
// ===============================================================
#ifdef TO_CLEAN
template <class Map>
inline
typename Map::mapped_type&
_stash_create_new_entry (Map& stash, typename Map::size_type dis_i, std::false_type)
{
    typedef typename Map::size_type   size_type;
    typedef typename Map::mapped_type T;
    std::pair<typename Map::iterator,bool> status
     = stash.insert (std::pair<const size_type,T>(dis_i,T()));
    return (*(status.first)).second;
};
template <class MultiMap>
inline
typename MultiMap::mapped_type&
_stash_create_new_entry (MultiMap& stash, typename MultiMap::size_type dis_i, std::true_type)
{
    typedef typename MultiMap::size_type   size_type;
    typedef typename MultiMap::mapped_type U;
    std::pair<typename MultiMap::iterator,bool> status
     = stash.insert (std::pair<const size_type,U>(dis_i,U()));
    return (*(status.first)).second;
};
template <class T, class A>
typename disarray_rep<T,distributed,A>::reference
disarray_rep<T,distributed,A>::new_dis_entry (size_type dis_i)
{
  size_type      first_dis_i = ownership().first_index();
  size_type       last_dis_i = ownership().last_index();
  if (dis_i >= first_dis_i && dis_i < last_dis_i) {
    return disarray_rep<T,distributed,A>::operator[](dis_i - first_dis_i);
  } else {
    assert_macro (dis_i < ownership().dis_size(), "index "<<dis_i
	<< " is out of range [0:" << ownership().dis_size() << "[");
    return _stash_create_new_entry (_stash, dis_i, is_container());
  }
}
#endif // TO_CLEAN
template <class Map>
inline
void
_stash_set (Map& stash, typename Map::size_type dis_i, const typename Map::mapped_type& val, std::false_type)
{
    typedef typename Map::size_type   size_type;
    typedef typename Map::mapped_type T;
    std::pair<typename Map::iterator,bool> status
     = stash.insert (std::pair<const size_type,T>(dis_i,T()));
    (*(status.first)).second = val;
};
template <class Map>
inline
void
_stash_set_add (Map& stash, typename Map::size_type dis_i, const typename Map::mapped_type& val, std::false_type)
{
    typedef typename Map::size_type   size_type;
    typedef typename Map::mapped_type T;
    std::pair<typename Map::iterator,bool> status 
     = stash.insert (std::pair<const size_type,T>(dis_i,T()));
    (*(status.first)).second += val;
};
template <class MultiMap, class T>
inline
void
_stash_set (MultiMap& stash, typename MultiMap::size_type dis_i, const T& val, std::true_type)
{
    // check if a multi-value for dis_i exists and delete it; then insert the new multi-value
    typedef typename MultiMap::iterator    iterator;
    typedef typename MultiMap::size_type   size_type;
    typedef typename MultiMap::mapped_type U;
    std::pair<iterator, iterator> range_dis_i = stash.equal_range (dis_i);
    stash.erase (range_dis_i.first, range_dis_i.second);
    for (typename T::const_iterator iter = val.begin(), last = val.end(); iter != last; iter++) {
      stash.insert (std::pair<const size_type,U>(dis_i,*iter));
    }
};
// insert a "T value" in multi-map when T has fixed size
template <class MultiMap, class U>
inline
void
_stash_set_add_multi (MultiMap& stash, typename MultiMap::size_type dis_i, const U& val, std::false_type)
{
  typedef typename MultiMap::size_type   size_type;
  typedef typename MultiMap::mapped_type W;
  stash.insert (std::pair<const size_type,W>(dis_i,val));
}
// insert a "T value" in multi-map when T has variable size
template <class MultiMap, class U>
inline
void
_stash_set_add_multi (MultiMap& stash, typename MultiMap::size_type dis_i, const U& val, std::true_type)
{
    typedef typename MultiMap::size_type   size_type;
    typedef typename MultiMap::mapped_type W;
    for (typename U::const_iterator iter = val.begin(), last = val.end(); iter != last; iter++) {
      stash.insert (std::pair<const size_type,W>(dis_i,*iter));
    }
}
// insert a "U value" for simple, or variable-sized one, as index_set or pair_set types
template <class MultiMap, class U>
inline
void
_stash_set_add (MultiMap& stash, typename MultiMap::size_type dis_i, const U& val, std::true_type)
{
  _stash_set_add_multi (stash, dis_i, val, typename is_container<U>::type());
}
template <class T, class A>
void
disarray_rep<T,distributed,A>::set_dis_entry (size_type dis_i, const T& val)
{
    size_type      start = ownership().first_index();
    size_type      last  = ownership().last_index();
    if (dis_i >= start && dis_i < last) {
        disarray_rep<T,distributed,A>::operator[](dis_i - start) = val;
    } else {
        assert_macro (dis_i < ownership().dis_size(), "index "<<dis_i
		<< " is out of range [0:" << ownership().dis_size() << "[");
        _stash_set (_stash, dis_i, val, is_container());
    }
}
template <class T, class A>
template <class U>
void
disarray_rep<T,distributed,A>::set_add_dis_entry (size_type dis_i, const U& val)
{
    size_type      start = ownership().first_index();
    size_type      last  = ownership().last_index();
    if (dis_i >= start && dis_i < last) {
        base::operator[](dis_i - start) += val;
    } else {
        assert_macro (dis_i < ownership().dis_size(),
		"index "<<dis_i<<" is out of range [0:"<<ownership().dis_size());
        _stash_set_add (_stash, dis_i, val, is_container());
    }
}
template <class T, class A>
template <class SetOp>
void
disarray_rep<T,distributed,A>::dis_entry_assembly_begin (SetOp my_set_op)
{
  _receive_max_size = mpi_assembly_begin (
        _stash,
        make_apply_iterator(_stash.begin(), first_op<typename stash_map_type::value_type>()),
        make_apply_iterator(_stash.end(),   first_op<typename stash_map_type::value_type>()),
        ownership(),
        _receive,
        _send);

  _stash.clear();
}
template <class T, class A>
template <class SetOp>
void
disarray_rep<T,distributed,A>::dis_entry_assembly_end(SetOp my_set_op)
{
  mpi_assembly_end (
	_receive,
	_send,
	_receive_max_size,
        disarray_make_store(
	    begin() - ownership().first_index(),
	    my_set_op,
	    size_type(0),
            is_container()));
   
  _send.waits.clear();
  _send.data.clear();
  _receive.waits.clear();
  _receive.data.clear();
  _receive_max_size = 0;
}
// ===============================================================
// repartition
// ===============================================================
template <class T, class A>
template <class A2>
void
disarray_rep<T,distributed,A>::repartition (				// old_numbering for *this
        const disarray_rep<size_type,distributed,A2>& partition,	// old_ownership
        disarray_rep<T,distributed,A>&                new_disarray,	// new_ownership
        disarray_rep<size_type,distributed,A2>&       old_numbering,	// new_ownership
        disarray_rep<size_type,distributed,A2>&       new_numbering) const // old_ownership
{
  using namespace std;
  communicator_type comm = ownership().comm();
  size_type nproc   = comm.size();
  size_type my_proc = comm.rank();
  vector<size_type> send_local_elt_size (nproc, 0);
  typename disarray_rep<size_type,distributed,A2>::const_iterator iter_part = partition.begin();
  for (size_type ie = 0; ie < partition.size(); ie++, iter_part++) {
    send_local_elt_size [*iter_part]++;
  }
  vector<size_type> recv_local_elt_size (nproc, 0);
  all_to_all (comm, send_local_elt_size, recv_local_elt_size);
  vector<size_type> recv_local_elt_start (nproc+1);
  recv_local_elt_start [0] = 0;
  for (size_type iproc = 0; iproc < nproc; iproc++) {
    recv_local_elt_start [iproc+1] = recv_local_elt_start [iproc] + recv_local_elt_size[iproc];
  }
  vector<size_type> send_local_elt_start (nproc);
  all_to_all (comm, recv_local_elt_start.begin().operator->(), send_local_elt_start.begin().operator->());
  size_type new_local_n_elt = recv_local_elt_start [nproc];
  size_type global_n_elt = dis_size();

  // re-distribute data:
  distributor new_elt_ownership (global_n_elt, comm, new_local_n_elt);
  new_disarray.resize     (new_elt_ownership);
  old_numbering.resize (new_elt_ownership, numeric_limits<size_type>::max());
  new_numbering.resize (ownership(), numeric_limits<size_type>::max());
  iter_part = partition.begin();
  const_iterator iter_elt = begin();
  typename disarray_rep<size_type,distributed,A2>::iterator iter_new_num_elt = new_numbering.begin();
  for (size_type ie = 0, ne = partition.size(); ie < ne; ie++, iter_part++, iter_elt++, iter_new_num_elt++) {
    size_type iproc      = *iter_part;
    const T& x = *iter_elt;
    size_type new_global_ie = new_elt_ownership[iproc] + send_local_elt_start[iproc];
    new_disarray.dis_entry (new_global_ie) = x;
    *iter_new_num_elt = new_global_ie;
    size_type old_global_ie = ownership()[my_proc] + ie;
    old_numbering.dis_entry (new_global_ie) = old_global_ie;
    send_local_elt_start[iproc]++;
  }
  new_disarray.template dis_entry_assembly<typename default_set_op<T>::type>();
  old_numbering.template dis_entry_assembly<typename default_set_op<size_type>::type>();
}
template <class T, class A>
template <class A2>
void
disarray_rep<T,distributed,A>::reverse_permutation (	         // old_ownership for *this=iold2dis_inew
        disarray_rep<size_type,distributed,A2>& inew2dis_iold) const // new_ownership
{
  check_macro (inew2dis_iold.dis_size() == dis_size(), "reverse permutation[0:"<<inew2dis_iold.dis_size()
	<<"[ has incompatible dis_range with oriinal permutation[0:"<<dis_size()<<"[");
  size_type first_dis_iold = ownership().first_index();
  for (size_type iold = 0; iold < size(); iold++) {
    size_type dis_iold = first_dis_iold + iold;
    size_type dis_inew = base::operator[] (iold);
    inew2dis_iold.dis_entry (dis_inew) = dis_iold;
  }
  inew2dis_iold.template dis_entry_assembly<typename default_set_op<T>::type>();
}
template <class T, class A>
template <class A2>
void
disarray_rep<T,distributed,A>::permutation_apply (			  // old_numbering for *this
        const disarray_rep<size_type,distributed,A2>& new_numbering,  // old_ownership
        disarray_rep<T,distributed,A>&                new_disarray) const // new_ownership
{
  check_macro (size() == new_numbering.size(),
	"permutation_apply: incompatible disarray("<<size()<<") and permutation("<<new_numbering.size()<<") sizes");
  check_macro (dis_size() == new_disarray.dis_size(),
	"permutation_apply: incompatible disarray("<<dis_size()<<") and permutation("<<new_disarray.dis_size()<<") dis_sizes");
  typename disarray_rep<size_type,distributed,A2>::const_iterator iter_dis_new_ie = new_numbering.begin();
  for (const_iterator iter = begin(), last = end(); iter != last; iter++, iter_dis_new_ie++) {
    size_type dis_new_ie = *iter_dis_new_ie;
    new_disarray.dis_entry (dis_new_ie) = *iter;
  }
  new_disarray.template dis_entry_assembly<typename default_set_op<T>::type>();
}
/// @brief get values from ext_idx_set, that are managed by another proc; here T=simple type
template <class T, class A>
template <class Set, class Map>
void
disarray_rep<T,distributed,A>::append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, std::false_type) const
{
    // 0) declare the local context
    scatter_message<std::vector<T,A> > from;
    scatter_message<std::vector<T,A> > to;

    // 1) convert set to vector, for direct acess:
    std::vector<size_type> ext_idx (ext_idx_set.size());
    std::copy (ext_idx_set.begin(), ext_idx_set.end(), ext_idx.begin());

    // 2) declare id[i]=i for scatter
    std::vector<size_type> id (ext_idx.size());
    for (size_type i = 0; i < id.size(); i++) id[i] = i;

    // 3) init scatter
    distributor::tag_type tag_init = distributor::get_new_tag();
    mpi_scatter_init(
        ext_idx.size(),
        ext_idx.begin().operator->(),
        id.size(),
        id.begin().operator->(),
        ownership().dis_size(),
        ownership().begin().operator->(),
        tag_init,
        ownership().comm(),
        from,
        to);

    // 4) begin scatter: send local data to others and get ask for missing data
    std::vector<T,A> buffer (ext_idx.size());
    distributor::tag_type tag = distributor::get_new_tag();
    mpi_scatter_begin (
        begin().operator->(),
        buffer.begin().operator->(),
        from,
        to,
        set_op<T,T>(),
        tag,
        ownership().comm());

    // 5) end scatter: receive missing data
    mpi_scatter_end (
        begin().operator->(),
        buffer.begin(),
        from,
        to,
        set_op<T,T>(),
        tag,
        ownership().comm());

    // 6) build the associative container: pair (ext_idx ; data)
    for (size_type i = 0; i < buffer.size(); i++) {
        ext_idx_map.insert (std::make_pair (ext_idx[i], buffer[i]));
    }
}
template <class T, class A>
void
disarray_rep<T,distributed,A>::reset_dis_indexes() const
{
    std::set<size_type> ext_idx_set;
    for (typename scatter_map_type::const_iterator iter = _ext_x.begin(), last = _ext_x.end(); iter != last; iter++) {
      ext_idx_set.insert ((*iter).first);
    }
    set_dis_indexes (ext_idx_set);
}
/// @brief get values from ext_idx_set, that are managed by another proc; here T=container type
template <class T, class A>
template <class Set, class Map>
void
disarray_rep<T,distributed,A>::append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, std::true_type) const
{
    typedef typename T::value_type S; // S is supposed to be MPI-simple, i.e. with fixed size

    // 0) declare the local context
    typedef scatter_message<std::vector<T,A>, true>    message_type;
    
    message_type from;
    message_type to;

    // 1) convert set to vector, for direct acess:
    std::vector<size_type> ext_idx (ext_idx_set.size());
    std::copy (ext_idx_set.begin(), ext_idx_set.end(), ext_idx.begin());

    // 2) declare id[i]=i for scatter
    std::vector<size_type> id (ext_idx.size());
    for (size_type i = 0; i < id.size(); i++) id[i] = i;

    // 3) init scatter
    distributor::tag_type tag_init = distributor::get_new_tag();
    mpi_scatter_init(
        ext_idx.size(),
        ext_idx.begin().operator->(),
        id.size(),
        id.begin().operator->(),
        ownership().dis_size(),
        ownership().begin().operator->(),
        tag_init,
        ownership().comm(),
        from.get_base(),
        to.get_base());

    // 4) copy size of multi-valued objects into a tmp
    std::vector<size_type> data_sizes (size());
    for (size_type i = 0, n = size(); i < n; i++) {
      data_sizes[i] = base::operator[](i).size();
    }
    // 5) begin scatter: send local data to others and get ask for missing data
    std::vector<size_type> buffer (ext_idx.size());
    distributor::tag_type tag = distributor::get_new_tag();
    mpi_scatter_begin (
        data_sizes.begin().operator->(),
        buffer.begin().operator->(),
        from.get_base(),
        to.get_base(),
        set_op<size_type,size_type>(),
        tag,
        ownership().comm());

    // 6) end scatter: receive missing data
    mpi_scatter_end (
        data_sizes.begin().operator->(),
        buffer.begin(),
        from.get_base(),
        to.get_base(),
        set_op<size_type,size_type>(),
        tag,
        ownership().comm());

    // 7) initialize multi-valued scatter
    from.multi_init();
    to.multi_init();

    // 8) begin multi-valued scatter
    std::vector<T,A> multi_buffer (ext_idx.size());
    distributor::tag_type multi_tag = distributor::get_new_tag();
    mpi_scatter_begin (
        begin().operator->(),
        multi_buffer.begin().operator->(),
        from,
        to,
        set_op<T,T>(),
        multi_tag,
        ownership().comm());

    // 9) end scatter: receive missing data
    mpi_scatter_end (
        begin().operator->(),
        multi_buffer.begin(),
        from,
        to,
        set_op<T,T>(),
        multi_tag,
        ownership().comm());

    // 10) build the associative container: pair (ext_idx ; data)
    for (size_type i = 0; i < multi_buffer.size(); i++) {
        ext_idx_map.insert (std::make_pair (ext_idx[i], multi_buffer[i]));
    }
}
/// @brief get values from ext_idx_set, that are managed by another proc
template <class T, class A>
template <class Set, class Map>
inline
void
disarray_rep<T,distributed,A>::append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const
{
    append_dis_entry (ext_idx_set, ext_idx_map, is_container());
}
template <class T, class A>
typename disarray_rep<T,distributed,A>::const_reference
disarray_rep<T,distributed,A>::dis_at (const size_type dis_i) const
{
    if (dis_i >= ownership().first_index() && dis_i < ownership().last_index()) {
      size_type i = dis_i - ownership().first_index();
      return base::operator[](i);
    }
    typename scatter_map_type::const_iterator iter = _ext_x.find (dis_i);
    check_macro (iter != _ext_x.end(), "unexpected external index="<<dis_i);
    return (*iter).second;
}
// ===============================================================
// put & get
// ===============================================================
template <class T, class A>
template <class PutFunction>
odiststream&
disarray_rep<T,distributed,A>::put_values (odiststream& ops, PutFunction put_element) const
{
    distributor::tag_type tag = distributor::get_new_tag();
    std::ostream& s = ops.os();
  
    // determine maximum message to arrive
    size_type max_size = 0;
    mpi::reduce(comm(), size(), max_size, mpi::maximum<size_type>(), 0);
 
    size_type io_proc = odiststream::io_proc();
    if (ownership().process() == io_proc) {
        for (size_type i = 0; i < size(); i++) {
            put_element (s, base::operator[](i));
            s << std::endl;
        }
        // receive and print messages
        std::vector<T,A> values (max_size);
        for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
 	    if (iproc == io_proc) continue; 
            size_type loc_sz_i = ownership().size(iproc);
	    if (loc_sz_i == 0) continue;
            mpi::status status = comm().recv(iproc, tag, values.begin().operator->(), max_size);
  	    boost::optional<int> n_data_opt = status.count<T>();
	    check_macro (n_data_opt, "receive failed");
  	    size_type n_data = n_data_opt.get();
  	    for (size_type i = 0; i < n_data; i++) {
                put_element (s, values[i]);
                s << std::endl;
            }          
        }
        s << std::flush;
    } else {
	if (size() != 0) {
  	    comm().send(io_proc, tag, begin().operator->(), size());
	}
    }
    return ops;
}
template <class T, class A>
odiststream&
disarray_rep<T,distributed,A>::put_values (odiststream& ops) const
{
  return put_values (ops, _disarray_put_element_type<T>());
}
template <class T, class A>
odiststream&
disarray_rep<T,distributed,A>::put_matlab (odiststream& ops) const
{
  ops << "[";
  put_values (ops, _disarray_put_matlab_type<T>());
  return ops << "];";
}
template <class T, class A>
template <class PutFunction, class A2>
odiststream&
disarray_rep<T,distributed,A>::permuted_put_values (
  odiststream&                       ops,
  const disarray_rep<size_type,distributed,A2>& perm,
  PutFunction                        put_element) const
{
  assert_macro (perm.size() == size(), "permutation size does not match");
  size_type io_proc = odiststream::io_proc();
  size_type my_proc = comm().rank();
  distributor io_ownership (dis_size(), comm(), (my_proc == io_proc) ? dis_size() : 0);
  disarray_rep<T,distributed,A>  perm_x (io_ownership);
  for (size_type i = 0, n = size(); i < n; i++) {
    perm_x.dis_entry (perm[i]) = base::operator[](i);
  }
  perm_x.template dis_entry_assembly_begin<typename default_set_op<T>::type>();
  perm_x.template dis_entry_assembly_end  <typename default_set_op<T>::type>();
  return perm_x.base::put_values (ops, put_element);
}
template <class T, class A>
template <class GetFunction>
idiststream&
disarray_rep<T,distributed,A>::get_values (idiststream& ps, GetFunction get_element) {
    distributor::tag_type tag = distributor::get_new_tag();
    std::istream& s = ps.is();
    size_type io_proc = odiststream::io_proc();
    if (ownership().process() == io_proc) {
        // load first chunk associated to proc 0
        if (!load_chunk (s, begin(), end(), get_element))
            error_macro("read failed on input stream.");

        if (ownership().n_process() > 1) {
            // read in other chuncks and send to other processors
            // determine maximum chunck owned by other
            size_type size_max = 1;
            for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
                size_max = std::max (size_max, ownership().size(iproc));
            }
            std::vector<T,A> data_proc_j (size_max);
            T *start_j = data_proc_j.begin().operator->();
	    // bizarre qu'on lise ts les blocs dans la meme zone de memoire
	    // et qu'on attende pas que ce soit envoye pour ecraser par le suivant ?
            for (size_type jproc = 0; jproc < ownership().n_process(); jproc++) {
 	        if (jproc == io_proc) continue; 
                // load first chunk associated to proc j
                size_type loc_sz_j = ownership().size(jproc);
		if (loc_sz_j == 0) continue;
                T *last_j = start_j + loc_sz_j;
                if (!load_chunk (s, start_j, last_j, get_element))
                    error_macro("read failed on input stream.");
  	        comm().send (jproc, tag, start_j, loc_sz_j);
            }
	}
  } else {
	if (size() != 0) {
	    comm().recv(io_proc, tag, begin().operator->(), size());	
	}
  }
  return ps;
}
template <class T, class A>
idiststream&
disarray_rep<T,distributed,A>::get_values (idiststream& ips) 
{
  return get_values (ips, _disarray_get_element_type<T>());
}
template <class T, class A>
void
disarray_rep<T,distributed,A>::dump (std::string name) const
{
  base::dump (name + itos(comm().rank()));
}

} // namespace rheolef
# endif // _RHEOLEF_HAVE_MPI