/usr/include/rheolef/geo.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | #ifndef _RHEOLEF_GEO_H
#define _RHEOLEF_GEO_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
/*
geo: mesh data structure
author: Pierre.Saramito@imag.fr
date: 20 april 2013
geo is an alias to geo_basic<T,M>
T: the current Float represetation (e.g. double)
M: the memory model (sequential or distributed)
the default memory model has been choosen by the configure script
geo_basic<T,M> is a smart_pointer_clone<geo_abstract_rep<T,M> >
i.e. a pointer with shalow copy semantic on a pure virtual base class geo_abstract_rep<T,M>
used by polymorphic hierarchy of classes.
there are three concrete variants for this base class:
geo_rep<T,M> : for usual meshes, as omega
geo_domain_indirect_rep<T,M> : for usual boundary domains, as gamma=omega["boundary"]
geo_domain_rep<T,M> : for compacted boundary domains, as gamma=omega["boundary"]
used when defining a space on a boundary domain, as
space W (omega["boundary"], "P1");
=> elments and vertex are renumbered in a compact form
for easy P1 dofs numbering.
Most code is shared by these three classes and by the sequential/distributed variants.
This leads to the following hierarchy of classes:
geo_abstract_base_rep<T> : virtual methods for M=seq
geo_abstract_rep<T,M> : M=seq,dis have separated impl; add methods for M=dis
geo_domain_indirect_base_rep<T,M>: data + methods for domains
geo_domain_indirect_rep<T,M> : M=seq,dis have separated impl; add methods for M=dis
geo_base_rep<T,M> : data + methods for geometry
geo_rep<T,M> : M=seq,dis have separated impl: add methods for M=dis
geo_domain_rep<T,M> : data + methods for compacted geometry on domain
*/
#include "rheolef/geo_element.h"
#include "rheolef/disarray.h"
#include "rheolef/hack_array.h"
#include "rheolef/geo_size.h"
#include "rheolef/point.h"
#include "rheolef/domain_indirect.h"
#include "rheolef/geo_header.h"
#include "rheolef/numbering.h"
#include "rheolef/space_constant.h"
#include "rheolef/geo_locate.h"
#include "rheolef/geo_trace_ray_boundary.h"
#include "rheolef/geo_nearest.h"
namespace rheolef {
// =========================================================================
// point io helpers
// =========================================================================
/// @brief point input helper
template <class T>
struct _point_get {
typedef typename point_basic<T>::size_type size_type;
_point_get (size_type d1) : d(d1) {}
size_type d;
std::istream& operator() (std::istream& is, point_basic<T>& x) { return x.get (is, d); }
};
/// @brief point output helper
template <class T>
struct _point_put {
typedef typename point_basic<T>::size_type size_type;
_point_put (size_type d1) : d(d1) {}
size_type d;
std::ostream& operator() (std::ostream& os, const point_basic<T>& x) { return x.put (os, d); }
};
// forward declaration:
template <class T, class M> class geo_basic;
template <class T, class M> class geo_domain_indirect_rep;
// =========================================================================
/// @brief geo iterator
// =========================================================================
template <class T> class geo_abstract_base_rep;
template<class T, class Ref, class Ptr, class IteratorByVariant>
struct geo_iterator {
typedef geo_iterator<T,Ref,Ptr,IteratorByVariant> _self;
typedef geo_iterator<T,T&,T*,typename hack_array<T>::iterator> _nonconst_iterator;
// typedefs
// see std::deque<T>::iterator : TODO: complete to a full random iterator
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef typename T::size_type size_type;
typedef ptrdiff_t difference_type;
// allocators:
template<class Geo>
geo_iterator (size_type dim, size_type variant, IteratorByVariant iter, Geo& omega);
geo_iterator (const _nonconst_iterator& y); // conversion from iter to const_iter
// accessors & modifiers:
reference operator* () const { return *_iter_by_var; }
pointer operator->() const { return _iter_by_var.operator->(); }
_self& operator++ () {
++_iter_by_var;
_reset_to_next_or_last();
return *this;
}
void _reset_to_next_or_last () {
while (_variant < _variant_max && _iter_by_var == _last_by_var [_variant]) {
++_variant; // then variant <= variant_max
if (_variant < _variant_max) {
_iter_by_var = _first_by_var [_variant];
}
}
}
_self operator++ (int) { _self tmp = *this; operator++(); return tmp; }
bool operator== (const _self& y) const { return _variant == y._variant && _iter_by_var == y._iter_by_var; }
bool operator!= (const _self& y) const { return ! operator== (y); }
// data:
size_type _variant;
size_type _variant_max;
IteratorByVariant _iter_by_var;
IteratorByVariant _first_by_var [reference_element::max_variant];
IteratorByVariant _last_by_var [reference_element::max_variant];
};
// =========================================================================
/// @brief abstract base interface class
// =========================================================================
template <class T>
class geo_abstract_base_rep {
public:
// typedefs
typedef enum {
geo = 0,
geo_domain = 1,
geo_domain_indirect = 2,
max_variant = 3
} geo_rep_variant_type;
typedef geo_element_hack::size_type size_type;
typedef point_basic<T> node_type;
typedef reference_element::variant_type variant_type;
typedef geo_element& reference;
typedef const geo_element& const_reference;
typedef typename hack_array<geo_element_hack>::iterator
iterator_by_variant;
typedef typename hack_array<geo_element_hack>::const_iterator
const_iterator_by_variant;
typedef geo_iterator<geo_element, geo_element&, geo_element*, iterator_by_variant>
iterator;
typedef geo_iterator<geo_element, const geo_element&, const geo_element*, const_iterator_by_variant>
const_iterator;
typedef space_constant::coordinate_type coordinate_type;
// allocators:
geo_abstract_base_rep () {}
virtual ~geo_abstract_base_rep () {}
// abstract accessors:
virtual size_type variant() const = 0;
virtual std::string name() const = 0;
virtual std::string familyname() const = 0;
virtual size_type dimension() const = 0;
virtual size_type serial_number() const = 0;
virtual size_type map_dimension() const = 0;
virtual coordinate_type coordinate_system() const = 0;
virtual const basis_basic<T>& get_piola_basis() const = 0;
virtual const node_type& xmin() const = 0;
virtual const node_type& xmax() const = 0;
virtual const T& hmin() const = 0;
virtual const T& hmax() const = 0;
virtual const geo_size& sizes() const = 0;
virtual const geo_size& ios_sizes() const = 0;
virtual const distributor& geo_element_ownership (size_type dim) const = 0;
virtual const_reference get_geo_element (size_type dim, size_type ige) const = 0;
virtual const geo_element& bgd2dom_geo_element (const geo_element& bgd_K) const { return bgd_K; }
virtual const geo_element& dom2bgd_geo_element (const geo_element& dom_K) const { return dom_K; }
virtual size_type neighbour (size_type ie, size_type loc_isid) const = 0;
virtual void neighbour_guard() const = 0;
virtual const_iterator_by_variant begin_by_variant (variant_type variant) const = 0;
virtual const_iterator_by_variant end_by_variant (variant_type variant) const = 0;
const_iterator begin (size_type dim) const;
const_iterator end (size_type dim) const;
virtual size_type n_node() const = 0;
virtual const node_type& node (size_type inod) const = 0;
virtual const node_type& dis_node (size_type dis_inod) const = 0;
virtual node_type piola (const geo_element& K, const node_type& hat_x) const = 0;
virtual void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const = 0;
virtual size_type dis_inod2dis_iv (size_type dis_inod) const = 0;
virtual size_type n_domain_indirect () const = 0;
virtual bool have_domain_indirect (const std::string& name) const = 0;
virtual void reset_order (size_type order) = 0;
virtual size_type seq_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const = 0;
virtual size_type dis_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const = 0;
virtual size_type seq_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const = 0;
virtual size_type dis_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const = 0;
virtual size_type seq_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const = 0;
virtual size_type dis_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const = 0;
// virtual i/o:
virtual odiststream& put (odiststream& ops) const = 0;
virtual bool check(bool verbose) const = 0;
// deduced comparator:
bool operator== (const geo_abstract_base_rep<T>& omega2) const {
return name() == omega2.name(); }
};
template<class T, class Ref, class Ptr, class IteratorByVariant>
template<class Geo>
geo_iterator<T,Ref,Ptr,IteratorByVariant>::geo_iterator (
size_type dim,
size_type variant,
IteratorByVariant iter,
Geo& omega)
: _variant (variant),
_variant_max (reference_element::last_variant_by_dimension(dim)),
_iter_by_var (iter),
_first_by_var(),
_last_by_var()
{
for (size_type variant = reference_element::first_variant_by_dimension(dim);
variant < reference_element::last_variant_by_dimension(dim); variant++) {
_first_by_var [variant] = omega.begin_by_variant (variant);
_last_by_var [variant] = omega. end_by_variant (variant);
}
_reset_to_next_or_last();
}
template<class T, class Ref, class Ptr, class IteratorByVariant>
geo_iterator<T,Ref,Ptr,IteratorByVariant>::geo_iterator (const _nonconst_iterator& y)
: _variant (y._variant),
_variant_max (y._variant_max),
_iter_by_var (y._iter_by_var),
_first_by_var(),
_last_by_var()
{
std::copy (y._first_by_var, y._first_by_var + reference_element::max_variant, _first_by_var);
std::copy (y. _last_by_var, y. _last_by_var + reference_element::max_variant, _last_by_var);
}
// =========================================================================
/// @brief abstract interface class
// =========================================================================
template <class T, class M>
class geo_abstract_rep {};
template <class T>
class geo_abstract_rep<T,sequential> : public geo_abstract_base_rep<T> {
public:
// typedefs
typedef geo_abstract_base_rep<T> base;
typedef typename base::size_type size_type;
typedef typename base::node_type node_type;
typedef typename base::variant_type variant_type;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename base::iterator_by_variant iterator_by_variant;
typedef typename base::const_iterator_by_variant const_iterator_by_variant;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
// allocators:
geo_abstract_rep () {}
virtual geo_abstract_rep<T,sequential>* clone() const = 0;
virtual ~geo_abstract_rep () {}
// abstract accessors:
virtual const domain_indirect_basic<sequential>& get_domain_indirect (size_type i) const = 0;
virtual const domain_indirect_basic<sequential>& get_domain_indirect (const std::string& name) const = 0;
virtual void insert_domain_indirect (const domain_indirect_basic<sequential>& dom) const = 0;
virtual const disarray<node_type,sequential>& get_nodes() const = 0;
virtual void set_nodes (const disarray<node_type,sequential>&) = 0;
virtual void locate (
const disarray<point_basic<T>, sequential>& x,
disarray<size_type, sequential>& dis_ie,
bool do_check = false) const = 0;
virtual void trace_ray_boundary (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y,
bool do_check = false) const = 0;
virtual void trace_move (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y) const = 0;
virtual void nearest (
const disarray<point_basic<T>,sequential>& x,
disarray<point_basic<T>,sequential>& x_nearest,
disarray<size_type, sequential>& dis_ie) const = 0;
};
#ifdef _RHEOLEF_HAVE_MPI
template <class T>
class geo_abstract_rep<T,distributed> : public geo_abstract_base_rep<T> {
public:
// typedefs
typedef geo_abstract_base_rep<T> base;
typedef typename base::size_type size_type;
typedef typename base::node_type node_type;
typedef typename base::const_reference const_reference;
typedef std::map <size_type, node_type, std::less<size_type>,
heap_allocator<std::pair<size_type,node_type> > > node_map_type;
// allocators:
geo_abstract_rep () {}
virtual geo_abstract_rep<T,distributed>* clone() const = 0;
virtual ~geo_abstract_rep () {}
// abstract accessors:
virtual distributor geo_element_ios_ownership (size_type dim) const = 0;
virtual const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const = 0;
virtual size_type ige2ios_dis_ige (size_type dim, size_type ige) const = 0;
virtual size_type dis_ige2ios_dis_ige (size_type dim, size_type dis_ige) const = 0;
virtual size_type ios_ige2dis_ige (size_type dim, size_type ios_ige) const = 0;
virtual const domain_indirect_basic<distributed>& get_domain_indirect (size_type i) const = 0;
virtual const domain_indirect_basic<distributed>& get_domain_indirect (const std::string& name) const = 0;
virtual void insert_domain_indirect (const domain_indirect_basic<distributed>& dom) const = 0;
virtual const disarray<node_type,distributed>& get_nodes() const = 0;
virtual void set_nodes (const disarray<node_type,distributed>&) = 0;
virtual void locate (
const disarray<point_basic<T>,distributed>& x,
disarray<size_type, distributed>& dis_ie,
bool do_check = true) const = 0;
virtual void trace_ray_boundary (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y,
bool do_check = false) const = 0;
virtual void trace_move (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y) const = 0;
virtual void nearest (
const disarray<point_basic<T>,distributed>& x,
disarray<point_basic<T>,distributed>& x_nearest,
disarray<size_type, distributed>& dis_ie) const = 0;
// utility:
virtual void set_ios_permutation (
std::array<size_type,reference_element::max_variant>& loc_ndof_by_variant,
disarray<size_type,distributed>& idof2ios_dis_idof) const = 0;
};
#endif // _RHEOLEF_HAVE_MPI
// =========================================================================
/// @brief base class for M=sequential or distributed meshes representations
// =========================================================================
// NOTE: since geo_rep<seq> contains sequential arrays for vertices and elts,
// the geo_rep<mpi> cannot derive from geo_rep<seq>. The solution is to
// derive both geo_rep<seq> and geo_rep<mpi> classes from a generic base class
// named geo_base_rep that takes the memory model (seq or mpi) as template argument.
template <class T, class M>
class geo_base_rep : public geo_abstract_rep<T,M> {
public:
// typedefs:
typedef geo_abstract_rep<T,M> base;
typedef typename base::size_type size_type;
typedef typename base::node_type node_type;
typedef typename base::variant_type variant_type;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename base::iterator_by_variant iterator_by_variant;
typedef typename base::const_iterator_by_variant const_iterator_by_variant;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::coordinate_type coordinate_type;
// allocators:
geo_base_rep ();
geo_base_rep (const geo_base_rep<T,M>&);
void build_from_list (
const geo_basic<T,M>& lambda,
const disarray<point_basic<T>,M>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,M>,
reference_element::max_variant>& elt_list);
~geo_base_rep ();
// abstract accessors defined:
size_type variant() const { return geo_abstract_base_rep<T>::geo; }
std::string familyname() const { return _name; }
std::string name() const;
size_type serial_number() const { return _serial_number; }
size_type dimension() const { return _dimension; }
size_type map_dimension() const { return _map_dimension; }
coordinate_type coordinate_system() const { return _sys_coord; }
void set_coordinate_system (coordinate_type sys_coord) { _sys_coord = sys_coord; }
void set_name (std::string name) { _name = name; }
void set_dimension (size_type dim) { _dimension = dim; }
void set_serial_number(size_type i) { _serial_number = i; }
const basis_basic<T>& get_piola_basis() const { return _numbering.get_basis(); }
const node_type& xmin() const { return _xmin; }
const node_type& xmax() const { return _xmax; }
const T& hmin() const { return _hmin; }
const T& hmax() const { return _hmax; }
const geo_size& sizes() const { return _gs; }
const geo_size& ios_sizes() const { return _gs; }
const distributor& geo_element_ownership (size_type dim) const { return _gs.ownership_by_dimension[dim]; }
const_reference get_geo_element (size_type dim, size_type ige) const;
const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const;
const_iterator_by_variant begin_by_variant (variant_type variant) const;
iterator_by_variant begin_by_variant (variant_type variant);
const_iterator_by_variant end_by_variant (variant_type variant) const;
iterator_by_variant end_by_variant (variant_type variant);
const node_type& node (size_type inod) const { return _node [inod]; }
const node_type& dis_node (size_type dis_inod) const { return _node.dis_at (dis_inod); }
const node_type& node (const geo_element& K, size_type loc_inod) const;
void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const
{ _numbering.dis_idof (_gs, K, dis_inod); }
node_type piola (const geo_element& K, const node_type& hat_x) const;
const disarray<node_type,M>& get_nodes() const { return _node; }
void set_nodes (const disarray<node_type,M>& x) { _node = x; _node.reset_dis_indexes(); compute_bbox(); }
size_type n_domain_indirect () const { return _domains.size(); }
bool have_domain_indirect (const std::string& name) const;
const domain_indirect_basic<M>& get_domain_indirect (size_type i) const { return _domains[i]; }
const domain_indirect_basic<M>& get_domain_indirect (const std::string& name) const;
void insert_domain_indirect (const domain_indirect_basic<M>& dom) const;
size_type seq_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const;
size_type dis_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const;
size_type seq_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const;
size_type dis_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const;
size_type seq_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const;
size_type dis_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const;
size_type neighbour (size_type ie, size_type loc_isid) const;
void neighbour_guard() const;
// additional accessors & modifier:
reference get_geo_element (size_type dim, size_type ige);
iterator begin (size_type dim);
iterator end (size_type dim);
// deduced accessors:
size_type size(size_type dim) const;
size_type dis_size(size_type dim) const;
const distributor& ownership() const { return geo_element_ownership (map_dimension()); }
const distributor& vertex_ownership() const { return geo_element_ownership (0); }
const communicator& comm() const { return ownership().comm(); }
size_type order() const { return get_piola_basis().degree(); }
size_type n_node() const { return _node. size(); }
size_type dis_n_node() const { return _node.dis_size(); }
size_type n_vertex() const { return size (0); }
size_type size() const { return size (map_dimension()); }
size_type dis_n_vertex() const { return dis_size (0); }
size_type dis_size() const { return dis_size (map_dimension()); }
size_type dis_n_edge() const { return dis_size (1); }
size_type dis_n_face() const { return dis_size (2); }
size_type dis_inod2dis_iv (size_type dis_inod) const;
size_type dis_iv2dis_inod (size_type dis_iv) const;
const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
reference operator[] (size_type ie) { return get_geo_element (map_dimension(), ie); }
const_iterator begin (size_type dim) const { return base::begin (dim); }
const_iterator end (size_type dim) const { return base::end (dim); }
const_iterator begin() const { return base::begin (map_dimension()); }
const_iterator end() const { return base::end (map_dimension()); }
const_iterator begin_edge() const { return base::begin (1); }
const_iterator end_edge() const { return base::end (1); }
const_iterator begin_face() const { return base::begin (2); }
const_iterator end_face() const { return base::end (2); }
protected:
void compute_bbox();
void init_neighbour() const;
template<class U> friend void add_ball_externals (const geo_base_rep<U,M>&, const disarray<index_set,M>&);
// data:
// 0) header:
std::string _name;
size_type _version;
size_type _serial_number;
// 1) connectivity:
std::array<hack_array<geo_element_hack,M>, reference_element::max_variant> _geo_element;
size_type _map_dimension;
geo_size _gs; // counters by geo_element dimension: 0,1,2,3
mutable std::vector<domain_indirect_basic<M> > _domains;
bool _have_connectivity; // e.g.list of edges in a 2d triangular mesh
mutable bool _have_neighbour; // inter-element connectivity
// 2) coordinates:
disarray<node_type, M> _node;
size_type _dimension;
coordinate_type _sys_coord;
node_type _xmin; // bounding box
node_type _xmax;
T _hmin;
T _hmax;
numbering<T,M> _numbering;
geo_locate<T,M> _locator;
geo_trace_ray_boundary<T,M> _tracer_ray_boundary;
geo_nearest<T,M> _nearestor;
};
template <class T, class M>
inline
void
geo_base_rep<T,M>::neighbour_guard() const
{
if (_have_neighbour) return;
_have_neighbour = true;
init_neighbour();
}
template <class T, class M>
typename geo_base_rep<T,M>::iterator_by_variant
geo_base_rep<T,M>::begin_by_variant (variant_type variant)
{
return _geo_element [variant].begin();
}
template <class T, class M>
typename geo_base_rep<T,M>::const_iterator_by_variant
geo_base_rep<T,M>::begin_by_variant (variant_type variant) const
{
return _geo_element [variant].begin();
}
template <class T, class M>
typename geo_base_rep<T,M>::iterator_by_variant
geo_base_rep<T,M>::end_by_variant (variant_type variant)
{
return _geo_element [variant].end();
}
template <class T, class M>
typename geo_base_rep<T,M>::const_iterator_by_variant
geo_base_rep<T,M>::end_by_variant (variant_type variant) const
{
return _geo_element [variant].end();
}
/// @brief iterator by dimension: wraps iterator by geo_element variant
template <class T, class M>
inline
typename geo_base_rep<T,M>::iterator
geo_base_rep<T,M>::begin (size_type dim)
{
variant_type variant = reference_element::first_variant_by_dimension(dim);
iterator_by_variant iter = begin_by_variant (variant);
iterator res = iterator (dim, variant, iter, *this);
return res;
}
template <class T, class M>
inline
typename geo_base_rep<T,M>::iterator
geo_base_rep<T,M>::end (size_type dim)
{
variant_type variant = reference_element::last_variant_by_dimension(dim);
iterator_by_variant iter = end_by_variant (variant - 1);
iterator res = iterator (dim, variant, iter, *this);
return res;
}
template <class T>
inline
typename geo_abstract_base_rep<T>::const_iterator
geo_abstract_base_rep<T>::begin (size_type dim) const
{
variant_type variant = reference_element::first_variant_by_dimension(dim);
const_iterator_by_variant iter = begin_by_variant (variant);
return const_iterator (dim, variant, iter, *this);
}
template <class T>
inline
typename geo_abstract_base_rep<T>::const_iterator
geo_abstract_base_rep<T>::end (size_type dim) const
{
variant_type variant = reference_element::last_variant_by_dimension(dim);
const_iterator_by_variant iter = end_by_variant (variant - 1);
return const_iterator (dim, variant, iter, *this);
}
// =========================================================================
/// @brief sequential mesh representation
// =========================================================================
template <class T, class M> class geo_rep {};
template <class T, class M>
void geo_build_by_subdividing (
geo_rep <T,M>& new_omega,
const geo_basic<T,M>& old_omega,
typename geo_rep<T,M>::size_type k);
template <class T>
class geo_rep<T,sequential> : public geo_base_rep<T,sequential> {
public:
// typedefs:
typedef geo_base_rep<T,sequential> base;
typedef typename base::size_type size_type;
typedef typename base::node_type node_type;
typedef typename base::variant_type variant_type;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename base::iterator_by_variant iterator_by_variant;
typedef typename base::const_iterator_by_variant const_iterator_by_variant;
typedef typename base::coordinate_type coordinate_type;
// allocators:
geo_rep();
geo_rep (const geo_rep<T,sequential>&);
geo_abstract_rep<T,sequential>* clone() const;
// build from_list (for level set)
geo_rep (
const geo_basic<T,sequential>& lambda,
const disarray<point_basic<T>,sequential>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential>,
reference_element::max_variant>& elt_list);
void build_from_domain (
const domain_indirect_rep<sequential>& indirect,
const geo_abstract_rep<T,sequential>& omega,
std::map<size_type,size_type>& bgd_ie2dom_ie);
// abstract accessors redefined:
void locate (
const disarray<point_basic<T>, sequential>& x,
disarray<size_type, sequential>& dis_ie,
bool do_check = false) const;
void trace_ray_boundary (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y,
bool do_check = false) const;
void trace_move (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y) const;
void nearest (
const disarray<point_basic<T>,sequential>& x,
disarray<point_basic<T>,sequential>& x_nearest,
disarray<size_type, sequential>& dis_ie) const;
// herited accessors:
size_type map_dimension () const { return base::map_dimension(); }
const distributor& geo_element_ownership(size_type dim) const { return base::geo_element_ownership (dim); }
const_reference get_geo_element (size_type dim, size_type ige) const { return base::get_geo_element (dim, ige); }
reference get_geo_element (size_type dim, size_type ige) { return base::get_geo_element (dim, ige); }
iterator begin (size_type dim) { return base::begin(dim); }
iterator end (size_type dim) { return base::end (dim); }
const_iterator begin (size_type dim) const { return base::begin(dim); }
const_iterator end (size_type dim) const { return base::end (dim); }
const domain_indirect_basic<sequential>& get_domain_indirect (size_type idom) const { return base::get_domain_indirect (idom); }
const domain_indirect_basic<sequential>& get_domain_indirect (const std::string& name) const { return base::get_domain_indirect (name); }
// deduced accessors:
const distributor& vertex_ownership() const { return geo_element_ownership(0); }
const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
reference operator[] (size_type ie) { return get_geo_element (map_dimension(), ie); }
#ifdef TO_CLEAN
size_type dis_inod2dis_iv (size_type dis_inod) const { return dis_inod; }
size_type dis_iv2dis_inod (size_type dis_iv) const { return dis_iv; }
#endif // TO_CLEAN
// i/o:
idiststream& get (idiststream&);
odiststream& put_geo (odiststream&) const;
odiststream& put (odiststream& ops) const { return put_geo(ops); }
void dump (std::string name) const;
void load (std::string name, const communicator& = communicator());
bool check(bool verbose) const;
// modifier:
void reset_order (size_type order);
void build_by_subdividing (const geo_basic<T,sequential>& omega, size_type k);
void build_from_data (
const geo_header& hdr,
const disarray<node_type, sequential>& node,
std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential, heap_allocator<size_type> >, reference_element::max_variant>&
tmp_geo_element,
bool do_upgrade);
// internal:
protected:
idiststream& get_standard (idiststream&, const geo_header&);
idiststream& get_upgrade (idiststream&, const geo_header&);
void build_connectivity (
std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential, heap_allocator<size_type> >, reference_element::max_variant>& tmp_geo_element);
void build_connectivity_sides (
size_type side_dim,
std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential, heap_allocator<size_type> >, reference_element::max_variant>& tmp_geo_element);
void set_element_side_index (size_type side_dim);
void domain_set_side_part1 (
const domain_indirect_rep<sequential>& indirect,
const geo_abstract_rep<T,sequential>& bgd_omega,
size_type sid_dim,
disarray<size_type,sequential>& bgd_isid2dom_dis_isid,
disarray<size_type,sequential>& dom_isid2bgd_isid,
disarray<size_type,sequential>& dom_isid2dom_ios_dis_isid,
size_type size_by_variant [reference_element::max_variant]);
void domain_set_side_part2 (
const domain_indirect_rep<sequential>& indirect,
const geo_abstract_rep<T,sequential>& bgd_omega,
disarray<size_type,sequential>& bgd_iv2dom_dis_iv,
size_type sid_dim,
disarray<size_type,sequential>& bgd_isid2dom_dis_isid,
disarray<size_type,sequential>& dom_isid2bgd_isid,
disarray<size_type,sequential>& dom_isid2dom_ios_dis_isid,
size_type size_by_variant [reference_element::max_variant]);
void build_external_entities () {} // for distributed compat
// friends:
friend void geo_build_by_subdividing<> (
geo_rep<T,sequential>& new_omega,
const geo_basic<T,sequential>& old_omega,
typename geo_rep<T,sequential>::size_type k);
};
#ifdef _RHEOLEF_HAVE_MPI
// =========================================================================
/// @brief distributed mesh representation
// =========================================================================
template <class T>
class geo_rep<T,distributed> : public geo_base_rep<T,distributed> {
public:
// typedefs:
typedef geo_base_rep<T,distributed> base;
typedef typename base::size_type size_type;
typedef typename base::node_type node_type;
typedef typename base::variant_type variant_type;
typedef typename base::node_map_type node_map_type;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename base::iterator_by_variant iterator_by_variant;
typedef typename base::const_iterator_by_variant const_iterator_by_variant;
typedef typename base::coordinate_type coordinate_type;
// allocators:
geo_rep ();
geo_rep (const geo_rep<T,distributed>&);
geo_abstract_rep<T,distributed>* clone() const;
void build_from_domain (
const domain_indirect_rep<distributed>& indirect,
const geo_abstract_rep<T,distributed>& omega,
std::map<size_type,size_type>& bgd_ie2dom_ie);
// build from_list (for level set)
geo_rep (
const geo_basic<T,distributed>& lambda,
const disarray<point_basic<T>,distributed>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,distributed>,
reference_element::max_variant>& elt_list);
// abstract accessors defined:
distributor geo_element_ios_ownership (size_type dim) const;
size_type ige2ios_dis_ige (size_type dim, size_type ige) const;
size_type dis_ige2ios_dis_ige (size_type dim, size_type dis_ige) const;
size_type ios_ige2dis_ige (size_type dim, size_type ios_ige) const;
const geo_size& ios_sizes() const { return _ios_gs; }
void locate (
const disarray<point_basic<T>,distributed>& x,
disarray<size_type, distributed>& dis_ie,
bool do_check = false) const;
void trace_ray_boundary (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y,
bool do_check = false) const;
void trace_move (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y) const;
void nearest (
const disarray<point_basic<T>,distributed>& x,
disarray<point_basic<T>,distributed>& x_nearest,
disarray<size_type, distributed>& dis_ie) const;
// herited accessors:
size_type map_dimension () const { return base::map_dimension(); }
size_type size (size_type dim) const { return base::size(dim); }
const distributor& geo_element_ownership(size_type dim) const { return base::geo_element_ownership (dim); }
const_reference get_geo_element (size_type dim, size_type ige) const { return base::get_geo_element (dim, ige); }
reference get_geo_element (size_type dim, size_type ige) { return base::get_geo_element (dim, ige); }
const_iterator begin (size_type dim) const { return base::begin(dim); }
const_iterator end (size_type dim) const { return base::end (dim); }
iterator begin (size_type dim) { return base::begin(dim); }
iterator end (size_type dim) { return base::end (dim); }
const domain_indirect_basic<distributed>& get_domain_indirect (size_type idom) const { return base::get_domain_indirect (idom); }
const domain_indirect_basic<distributed>& get_domain_indirect (const std::string& name) const { return base::get_domain_indirect (name); }
// deduced accessors:
size_type size () const { return size (map_dimension()); }
const distributor& vertex_ownership() const { return geo_element_ownership(0); }
const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
#ifdef TODO
reference operator[] (size_type ie) { return get_geo_element (map_dimension(), ie); }
#endif // TODO
// modifier:
void reset_order (size_type order);
void build_by_subdividing (const geo_basic<T,distributed>& omega, size_type k);
// i/o:
idiststream& get (idiststream&);
odiststream& put (odiststream&) const;
void dump (std::string name) const;
void load (std::string name, const communicator& comm);
bool check(bool verbose) const;
// utilities:
void set_ios_permutation (
std::array<size_type,reference_element::max_variant>& loc_ndof_by_variant,
disarray<size_type,distributed>& idof2ios_dis_idof) const;
protected:
// internal:
void build_external_entities ();
void set_element_side_index (size_type side_dim);
void domain_set_side_part1 (
const domain_indirect_rep<distributed>& indirect,
const geo_abstract_rep<T,distributed>& bgd_omega,
size_type sid_dim,
disarray<size_type>& bgd_isid2dom_dis_isid,
disarray<size_type>& dom_isid2bgd_isid,
disarray<size_type>& dom_isid2dom_ios_dis_isid,
size_type size_by_variant [reference_element::max_variant]);
void domain_set_side_part2 (
const domain_indirect_rep<distributed>& indirect,
const geo_abstract_rep<T,distributed>& bgd_omega,
disarray<size_type>& bgd_iv2dom_dis_iv,
size_type sid_dim,
disarray<size_type>& bgd_isid2dom_dis_isid,
disarray<size_type>& dom_isid2bgd_isid,
disarray<size_type>& dom_isid2dom_ios_dis_isid,
size_type size_by_variant [reference_element::max_variant]);
void node_renumbering (const distributor& ios_node_ownership);
// data:
disarray<size_type> _inod2ios_dis_inod; // permutation for node
disarray<size_type> _ios_inod2dis_inod; // reverse permutation for node
std::array<disarray<size_type>, 4> _ios_ige2dis_ige; // reverse permutation for geo_element[dim]
geo_size _ios_gs;
std::array<disarray<size_type>,reference_element::max_variant> _igev2ios_dis_igev;
std::array<disarray<size_type>,reference_element::max_variant> _ios_igev2dis_igev;
// friends:
friend void geo_build_by_subdividing<> (
geo_rep<T,distributed>& new_omega,
const geo_basic<T,distributed>& old_omega,
typename geo_rep<T,distributed>::size_type k);
};
#endif // _RHEOLEF_HAVE_MPI
// =========================================================================
/// @brief generic mesh with rerefence counting
// =========================================================================
template <class T, class M = rheo_default_memory_model>
class geo_basic {
public:
typedef M memory_type;
};
/*Class:geo
NAME: @code{geo} - finite element mesh (@PACKAGE@-@VERSION@)
SYNOPSYS:
Distributed finite element mesh.
SEE ALSO: "geo_element"(3)
AUTHORS: Pierre.Saramito@imag.fr
DATE: 10 december 2010
End:
*/
// =========================================================================
/// @brief sequential mesh with reference counting
// =========================================================================
// handler for complex geo names as "square[boundary]"
template<class T, class M> geo_basic<T,M> geo_load (const std::string& name);
// guards for omega.boundary(), omega.internal_sides() and omega.sides()
template<class T, class M> void boundary_guard (const geo_basic<T,M>&);
template<class T, class M> void internal_sides_guard (const geo_basic<T,M>&);
template<class T, class M> void sides_guard (const geo_basic<T,M>&);
//<verbatim:
template <class T>
class geo_basic<T,sequential> : public smart_pointer_clone<geo_abstract_rep<T,sequential> > {
public:
// typedefs:
typedef sequential memory_type;
typedef geo_abstract_rep<T,sequential> rep;
typedef geo_rep<T,sequential> rep_geo_rep;
typedef smart_pointer_clone<rep> base;
typedef typename rep::size_type size_type;
typedef typename rep::node_type node_type;
typedef typename rep::variant_type variant_type;
typedef typename rep::reference reference;
typedef typename rep::const_reference const_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::iterator_by_variant iterator_by_variant;
typedef typename rep::const_iterator_by_variant const_iterator_by_variant;
typedef typename rep::coordinate_type coordinate_type;
// allocators:
geo_basic ();
geo_basic (std::string name, const communicator& comm = communicator());
void load (std::string name, const communicator& comm = communicator());
geo_basic (const domain_indirect_basic<sequential>& dom, const geo_basic<T,sequential>& omega);
// build from_list (for level set)
geo_basic (
const geo_basic<T,sequential>& lambda,
const disarray<point_basic<T>,sequential>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential>,
reference_element::max_variant>& elt_list)
: base (new_macro(rep_geo_rep(lambda,node_list,elt_list))) {}
// accessors:
std::string name() const { return base::data().name(); }
std::string familyname() const { return base::data().familyname(); }
size_type dimension() const { return base::data().dimension(); }
size_type map_dimension() const { return base::data().map_dimension(); }
size_type serial_number() const { return base::data().serial_number(); }
size_type variant() const { return base::data().variant(); }
coordinate_type coordinate_system() const { return base::data().coordinate_system(); }
std::string coordinate_system_name() const { return space_constant::coordinate_system_name(coordinate_system()); }
const basis_basic<T>& get_piola_basis() const { return base::data().get_piola_basis(); }
size_type order() const { return base::data().get_piola_basis().degree(); }
const node_type& xmin() const { return base::data().xmin(); }
const node_type& xmax() const { return base::data().xmax(); }
const T& hmin() const { return base::data().hmin(); }
const T& hmax() const { return base::data().hmax(); }
const distributor& geo_element_ownership(size_type dim) const { return base::data().geo_element_ownership(dim); }
const geo_size& sizes() const { return base::data().sizes(); }
const geo_size& ios_sizes() const { return base::data().ios_sizes(); }
const_reference get_geo_element (size_type dim, size_type ige) const { return base::data().get_geo_element (dim, ige); }
reference get_geo_element (size_type dim, size_type ige) { return base::data().get_geo_element (dim, ige); }
const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const
{ return get_geo_element (dim, dis_ige); }
const geo_element& bgd2dom_geo_element (const geo_element& bgd_K) const { return base::data().bgd2dom_geo_element (bgd_K); }
const geo_element& dom2bgd_geo_element (const geo_element& dom_K) const { return base::data().dom2bgd_geo_element (dom_K); }
size_type neighbour (size_type ie, size_type loc_isid) const {
return base::data().neighbour (ie, loc_isid); }
void neighbour_guard() const { base::data().neighbour_guard(); }
size_type n_node() const { return base::data().n_node(); }
const node_type& node(size_type inod) const { return base::data().node(inod); }
const node_type& dis_node(size_type dis_inod) const { return base::data().dis_node(dis_inod); }
void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const {
return base::data().dis_inod(K,dis_inod); }
node_type piola (const geo_element& K, const node_type& hat_x) const { return base::data().piola (K, hat_x); }
const disarray<node_type,sequential>& get_nodes() const { return base::data().get_nodes(); }
size_type dis_inod2dis_iv (size_type dis_inod) const { return base::data().dis_inod2dis_iv(dis_inod); }
size_type n_domain_indirect () const { return base::data().n_domain_indirect (); }
bool have_domain_indirect (const std::string& name) const { return base::data().have_domain_indirect (name); }
const domain_indirect_basic<sequential>& get_domain_indirect (size_type i) const {
return base::data().get_domain_indirect (i); }
const domain_indirect_basic<sequential>& get_domain_indirect (const std::string& name) const {
return base::data().get_domain_indirect (name); }
void insert_domain_indirect (const domain_indirect_basic<sequential>& dom) const {
base::data().insert_domain_indirect (dom); }
size_type n_domain () const { return base::data().n_domain_indirect (); }
geo_basic<T,sequential> get_domain (size_type i) const;
geo_basic<T,sequential> operator[] (const std::string& name) const;
geo_basic<T,sequential> boundary() const;
geo_basic<T,sequential> internal_sides() const;
geo_basic<T,sequential> sides() const;
size_type seq_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const
{ return base::data().seq_locate (x, dis_ie_guest); }
size_type dis_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const
{ return base::data().dis_locate (x, dis_ie_guest); }
void locate (
const disarray<point_basic<T>, sequential>& x,
disarray<size_type, sequential>& dis_ie) const
{ return base::data().locate (x, dis_ie); }
size_type seq_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const
{ return base::data().seq_trace_move (x,v,y); }
size_type dis_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const
{ return base::data().dis_trace_move (x,v,y); }
void trace_ray_boundary (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y) const
{ return base::data().trace_ray_boundary (x,v,dis_ie,y); }
void trace_move (
const disarray<point_basic<T>,sequential>& x,
const disarray<point_basic<T>,sequential>& v,
disarray<size_type, sequential>& dis_ie,
disarray<point_basic<T>,sequential>& y) const
{ return base::data().trace_move (x,v,dis_ie,y); }
size_type seq_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const
{ return base::data().seq_nearest (x, x_nearest); }
size_type dis_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const
{ return base::data().dis_nearest (x, x_nearest); }
void nearest (
const disarray<point_basic<T>,sequential>& x,
disarray<point_basic<T>,sequential>& x_nearest,
disarray<size_type, sequential>& dis_ie) const
{ base::data().nearest (x, x_nearest, dis_ie); }
// modifiers:
void set_name (std::string name);
void set_dimension (size_type dim);
void set_serial_number (size_type i);
void reset_order (size_type order);
void set_coordinate_system (coordinate_type sys_coord);
void set_coordinate_system (std::string sys_coord_name) { set_coordinate_system (space_constant::coordinate_system(sys_coord_name)); }
void set_nodes (const disarray<node_type,sequential>& x);
void build_by_subdividing (const geo_basic<T,sequential>& omega, size_type k);
void build_from_data (
const geo_header& hdr,
const disarray<node_type, sequential>& node,
std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential, heap_allocator<size_type> >, reference_element::max_variant>&
tmp_geo_element,
bool do_upgrade);
// extended accessors:
const communicator& comm() const { return geo_element_ownership (0).comm(); }
size_type size(size_type dim) const { return base::data().geo_element_ownership(dim).size(); }
size_type dis_size(size_type dim) const { return base::data().geo_element_ownership(dim).dis_size(); }
size_type size() const { return size (map_dimension()); }
size_type dis_size() const { return dis_size (map_dimension()); }
size_type n_vertex() const { return size (0); }
size_type dis_n_vertex() const { return dis_size (0); }
const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
reference operator[] (size_type ie) { return get_geo_element (map_dimension(), ie); }
const_iterator begin (size_type dim) const { return base::data().begin(dim); }
const_iterator end (size_type dim) const { return base::data().end (dim); }
const_iterator begin () const { return begin(map_dimension()); }
const_iterator end () const { return end (map_dimension()); }
const_iterator_by_variant begin_by_variant (variant_type variant) const
{ return base::data().begin_by_variant (variant); }
const_iterator_by_variant end_by_variant (variant_type variant) const
{ return base::data(). end_by_variant (variant); }
const geo_basic<T,sequential>& get_background_geo() const; // code in geo_domain.h
geo_basic<T,sequential> get_background_domain() const;
// for compatibility with distributed interface:
size_type ige2ios_dis_ige (size_type dim, size_type ige) const { return ige; }
size_type dis_ige2ios_dis_ige (size_type dim, size_type dis_ige) const { return dis_ige; }
size_type ios_ige2dis_ige (size_type dim, size_type ios_ige) const { return ios_ige; }
// comparator:
bool operator== (const geo_basic<T,sequential>& omega2) const { return base::data().operator== (omega2.data()); }
// i/o:
idiststream& get (idiststream& ips);
odiststream& put (odiststream& ops) const;
void save (std::string filename = "") const;
void dump (std::string name) const { base::data().dump (name); }
bool check (bool verbose = true) const { return base::data().check(verbose); }
};
//>verbatim:
template <class T>
inline
geo_basic<T,sequential>::geo_basic()
: base (new_macro((geo_rep<T,sequential>)))
{
}
template <class T>
inline
geo_basic<T,sequential>::geo_basic (std::string name, const communicator& comm)
: base (0)
{
base::operator= (geo_load<T,sequential>(name));
}
template <class T>
inline
void
geo_basic<T,sequential>::load (std::string name, const communicator& comm)
{
base::operator= (geo_load<T,sequential>(name));
}
template <class T>
inline
geo_basic<T,sequential>
geo_basic<T,sequential>::boundary() const
{
boundary_guard (*this);
return operator[] ("boundary");
}
template <class T>
inline
geo_basic<T,sequential>
geo_basic<T,sequential>::internal_sides() const
{
internal_sides_guard (*this);
return operator[] ("internal_sides");
}
template <class T>
inline
geo_basic<T,sequential>
geo_basic<T,sequential>::sides() const
{
sides_guard (*this);
return operator[] ("sides");
}
#ifdef _RHEOLEF_HAVE_MPI
// =========================================================================
/// @brief distributed mesh with rerefence counting
// =========================================================================
//<verbatim:
template <class T>
class geo_basic<T,distributed> : public smart_pointer_clone<geo_abstract_rep<T,distributed> > {
public:
// typedefs:
typedef distributed memory_type;
typedef geo_abstract_rep<T,distributed> rep;
typedef geo_rep<T,distributed> rep_geo_rep;
typedef smart_pointer_clone<rep> base;
typedef typename rep::size_type size_type;
typedef typename rep::node_type node_type;
typedef typename rep::variant_type variant_type;
typedef typename rep::node_map_type node_map_type;
typedef typename rep::reference reference;
typedef typename rep::const_reference const_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::iterator_by_variant iterator_by_variant;
typedef typename rep::const_iterator_by_variant const_iterator_by_variant;
typedef typename rep::coordinate_type coordinate_type;
// allocators:
geo_basic ();
geo_basic (std::string name, const communicator& comm = communicator());
void load (std::string name, const communicator& comm = communicator());
geo_basic (const domain_indirect_basic<distributed>& dom, const geo_basic<T,distributed>& omega);
// build from_list (for level set)
geo_basic (
const geo_basic<T,distributed>& lambda,
const disarray<point_basic<T>,distributed>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,distributed>,
reference_element::max_variant>& elt_list)
: base (new_macro(rep_geo_rep(lambda,node_list,elt_list))) {}
// accessors:
std::string name() const { return base::data().name(); }
std::string familyname() const { return base::data().familyname(); }
size_type dimension() const { return base::data().dimension(); }
size_type map_dimension() const { return base::data().map_dimension(); }
size_type serial_number() const { return base::data().serial_number(); }
size_type variant() const { return base::data().variant(); }
coordinate_type coordinate_system() const { return base::data().coordinate_system(); }
std::string coordinate_system_name() const { return space_constant::coordinate_system_name(coordinate_system()); }
const basis_basic<T>& get_piola_basis() const { return base::data().get_piola_basis(); }
size_type order() const { return base::data().get_piola_basis().degree(); }
const node_type& xmin() const { return base::data().xmin(); }
const node_type& xmax() const { return base::data().xmax(); }
const T& hmin() const { return base::data().hmin(); }
const T& hmax() const { return base::data().hmax(); }
const distributor& geo_element_ownership(size_type dim) const
{ return base::data().geo_element_ownership (dim); }
const geo_size& sizes() const { return base::data().sizes(); }
const geo_size& ios_sizes() const { return base::data().ios_sizes(); }
const_reference get_geo_element (size_type dim, size_type ige) const
{ return base::data().get_geo_element (dim, ige); }
const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const
{ return base::data().dis_get_geo_element (dim, dis_ige); }
const geo_element& bgd2dom_geo_element (const geo_element& bgd_K) const
{ return base::data().bgd2dom_geo_element (bgd_K); }
const geo_element& dom2bgd_geo_element (const geo_element& dom_K) const
{ return base::data().dom2bgd_geo_element (dom_K); }
size_type neighbour (size_type ie, size_type loc_isid) const {
return base::data().neighbour (ie, loc_isid); }
void neighbour_guard() const { base::data().neighbour_guard(); }
distributor geo_element_ios_ownership (size_type dim) const {
return base::data().geo_element_ios_ownership (dim); }
size_type ige2ios_dis_ige (size_type dim, size_type ige) const {
return base::data().ige2ios_dis_ige (dim,ige); }
size_type dis_ige2ios_dis_ige (size_type dim, size_type dis_ige) const {
return base::data().dis_ige2ios_dis_ige (dim,dis_ige); }
size_type ios_ige2dis_ige (size_type dim, size_type ios_ige) const {
return base::data().ios_ige2dis_ige (dim, ios_ige); }
size_type n_node() const { return base::data().n_node(); }
const node_type& node(size_type inod) const { return base::data().node(inod); }
const node_type& dis_node(size_type dis_inod) const { return base::data().dis_node(dis_inod); }
void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const {
return base::data().dis_inod(K,dis_inod); }
node_type piola (const geo_element& K, const node_type& hat_x) const { return base::data().piola (K, hat_x); }
const disarray<node_type,distributed>& get_nodes() const { return base::data().get_nodes(); }
size_type n_domain_indirect () const { return base::data().n_domain_indirect (); }
bool have_domain_indirect (const std::string& name) const { return base::data().have_domain_indirect (name); }
const domain_indirect_basic<distributed>& get_domain_indirect (size_type i) const {
return base::data().get_domain_indirect (i); }
const domain_indirect_basic<distributed>& get_domain_indirect (const std::string& name) const {
return base::data().get_domain_indirect (name); }
void insert_domain_indirect (const domain_indirect_basic<distributed>& dom) const {
base::data().insert_domain_indirect (dom); }
size_type n_domain () const { return base::data().n_domain_indirect (); }
geo_basic<T,distributed> get_domain (size_type i) const;
geo_basic<T,distributed> operator[] (const std::string& name) const;
geo_basic<T,distributed> boundary() const;
geo_basic<T,distributed> internal_sides() const;
geo_basic<T,distributed> sides() const;
size_type seq_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const
{ return base::data().seq_locate (x, dis_ie_guest); }
size_type dis_locate (
const point_basic<T>& x,
size_type dis_ie_guest = std::numeric_limits<size_type>::max()) const
{ return base::data().dis_locate (x, dis_ie_guest); }
void locate (const disarray<point_basic<T>, distributed>& x, disarray<size_type, distributed>& dis_ie) const
{ return base::data().locate (x, dis_ie); }
size_type seq_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const
{ return base::data().seq_trace_move (x,v,y); }
size_type dis_trace_move (
const point_basic<T>& x,
const point_basic<T>& v,
point_basic<T>& y) const
{ return base::data().dis_trace_move (x,v,y); }
void trace_ray_boundary (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y) const
{ return base::data().trace_ray_boundary (x,v,dis_ie,y); }
void trace_move (
const disarray<point_basic<T>,distributed>& x,
const disarray<point_basic<T>,distributed>& v,
disarray<size_type, distributed>& dis_ie,
disarray<point_basic<T>,distributed>& y) const
{ return base::data().trace_move (x,v,dis_ie,y); }
size_type seq_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const
{ return base::data().seq_nearest (x, x_nearest); }
size_type dis_nearest (
const point_basic<T>& x,
point_basic<T>& x_nearest) const
{ return base::data().dis_nearest (x, x_nearest); }
void nearest (
const disarray<point_basic<T>,distributed>& x,
disarray<point_basic<T>,distributed>& x_nearest,
disarray<size_type, distributed>& dis_ie) const
{ base::data().nearest (x, x_nearest, dis_ie); }
// modifiers:
void set_nodes (const disarray<node_type,distributed>& x);
void reset_order (size_type order);
size_type dis_inod2dis_iv (size_type dis_inod) const { return base::data().dis_inod2dis_iv(dis_inod); }
void set_coordinate_system (coordinate_type sys_coord);
void set_coordinate_system (std::string sys_coord_name) { set_coordinate_system (space_constant::coordinate_system(sys_coord_name)); }
void set_dimension (size_type dim);
void set_serial_number (size_type i);
void set_name (std::string name);
void build_by_subdividing (const geo_basic<T,distributed>& omega, size_type k);
// extended accessors:
size_type size(size_type dim) const { return base::data().geo_element_ownership(dim).size(); }
size_type dis_size(size_type dim) const { return base::data().geo_element_ownership(dim).dis_size(); }
const communicator& comm() const { return geo_element_ownership (0).comm(); }
size_type size() const { return size (map_dimension()); }
size_type dis_size() const { return dis_size (map_dimension()); }
size_type n_vertex() const { return size (0); }
size_type dis_n_vertex() const { return dis_size (0); }
const_reference operator[] (size_type ie) const
{ return get_geo_element (map_dimension(), ie); }
const_iterator begin (size_type dim) const { return base::data().begin(dim); }
const_iterator end (size_type dim) const { return base::data().end (dim); }
const_iterator begin () const { return begin(map_dimension()); }
const_iterator end () const { return end (map_dimension()); }
const_iterator_by_variant begin_by_variant (variant_type variant) const
{ return base::data().begin_by_variant (variant); }
const_iterator_by_variant end_by_variant (variant_type variant) const
{ return base::data(). end_by_variant (variant); }
const geo_basic<T,distributed>& get_background_geo() const; // code in geo_domain.h
geo_basic<T,distributed> get_background_domain() const;
// comparator:
bool operator== (const geo_basic<T,distributed>& omega2) const { return base::data().operator== (omega2.data()); }
// i/o:
odiststream& put (odiststream& ops) const { return base::data().put (ops); }
idiststream& get (idiststream& ips);
void save (std::string filename = "") const;
bool check (bool verbose = true) const { return base::data().check(verbose); }
// utilities:
void set_ios_permutation (
std::array<size_type,reference_element::max_variant>& loc_ndof_by_variant,
disarray<size_type,distributed>& idof2ios_dis_idof) const
{ base::data().set_ios_permutation (loc_ndof_by_variant, idof2ios_dis_idof); }
};
//>verbatim:
#endif // _RHEOLEF_HAVE_MPI
/// @brief geo - the default mesh class
typedef geo_basic<Float,rheo_default_memory_model> geo;
// ==============================================================================
// inlined: geo<T,distributed>
// ==============================================================================
#ifdef _RHEOLEF_HAVE_MPI
template <class T>
inline
geo_basic<T,distributed>::geo_basic()
: base (new_macro((geo_rep<T,distributed>)))
{
}
template <class T>
inline
geo_basic<T,distributed>::geo_basic (std::string name, const communicator& comm)
: base (0)
{
base::operator= (geo_load<T,distributed>(name));
}
template <class T>
inline
void
geo_basic<T,distributed>::load (std::string name, const communicator& comm)
{
base::operator= (geo_load<T,distributed>(name));
}
template <class T>
inline
idiststream&
geo_basic<T,distributed>::get (idiststream& ips)
{
// allocate a new geo_rep object (TODO: do a dynamic_cast ?)
geo_rep<T,distributed>* ptr = new_macro((geo_rep<T,distributed>));
ptr->get (ips);
base::operator= (ptr);
return ips;
}
template <class T>
inline
geo_basic<T,distributed>
geo_basic<T,distributed>::boundary() const
{
boundary_guard (*this);
return operator[] ("boundary");
}
template <class T>
inline
geo_basic<T,distributed>
geo_basic<T,distributed>::internal_sides() const
{
internal_sides_guard (*this);
return operator[] ("internal_sides");
}
template <class T>
inline
geo_basic<T,distributed>
geo_basic<T,distributed>::sides() const
{
sides_guard (*this);
return operator[] ("sides");
}
#endif // _RHEOLEF_HAVE_MPI
// ==============================================================================
// geo fat interface: members are specific to geo_rep
// => check that pointer to geo_abstract_rep points to a geo_rep
// ==============================================================================
#define _RHEOLEF_save(M) \
template <class T> \
void \
geo_basic<T,M>::save (std::string filename) const \
{ \
if (filename == "") filename = name(); \
odiststream out (filename, "geo"); \
put (out); \
}
#define _RHEOLEF_set_nodes(M) \
template <class T> \
void \
geo_basic<T,M>::set_nodes (const disarray<node_type,M>& x) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot set_nodes on geo_domains"); \
ptr->set_nodes(x); \
}
#define _RHEOLEF_reset_order(M) \
template <class T> \
void \
geo_basic<T,M>::reset_order (size_type order) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot reset_order on geo_domains"); \
ptr->reset_order(order); \
}
#define _RHEOLEF_set_coordinate_system(M) \
template <class T> \
void \
geo_basic<T,M>::set_coordinate_system (coordinate_type sys_coord) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot set_coordinate_system on geo_domains"); \
ptr->set_coordinate_system(sys_coord); \
}
#define _RHEOLEF_set_dimension(M) \
template <class T> \
void \
geo_basic<T,M>::set_dimension (size_type dim) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot set_dimension on geo_domains"); \
ptr->set_dimension(dim); \
}
#define _RHEOLEF_set_serial_number(M) \
template <class T> \
void \
geo_basic<T,M>::set_serial_number (size_type i) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot set_serial_number on geo_domains"); \
ptr->set_serial_number(i); \
}
#define _RHEOLEF_set_name(M) \
template <class T> \
void \
geo_basic<T,M>::set_name (std::string name) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot set_name on geo_domains"); \
ptr->set_name(name); \
}
#define _RHEOLEF_build_from_data(M) \
template <class T> \
void \
geo_basic<T,M>::build_from_data ( \
const geo_header& hdr, \
const disarray<node_type, M>& node, \
std::array<disarray<geo_element_auto<heap_allocator<size_type> >,M, heap_allocator<size_type> >, reference_element::max_variant>& tmp_geo_element, \
bool do_upgrade) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot build_from_data on geo_domains"); \
ptr->build_from_data (hdr, node, tmp_geo_element, do_upgrade); \
}
#define _RHEOLEF_build_by_subdividing(M) \
template <class T> \
void \
geo_basic<T,M>::build_by_subdividing ( \
const geo_basic<T,M>& omega, \
size_type k) \
{ \
geo_rep<T,M>* ptr = dynamic_cast<geo_rep<T,M>*>(base::pointer()); \
check_macro (ptr != 0, "cannot build_by_subdividing on geo_domains"); \
ptr->build_by_subdividing (omega, k); \
}
_RHEOLEF_save(sequential)
_RHEOLEF_set_nodes(sequential)
_RHEOLEF_reset_order(sequential)
_RHEOLEF_set_coordinate_system(sequential)
_RHEOLEF_set_dimension(sequential)
_RHEOLEF_set_serial_number(sequential)
_RHEOLEF_set_name(sequential)
_RHEOLEF_build_from_data(sequential)
_RHEOLEF_build_by_subdividing(sequential)
#ifdef _RHEOLEF_HAVE_MPI
_RHEOLEF_save(distributed)
_RHEOLEF_set_nodes(distributed)
_RHEOLEF_reset_order(distributed)
_RHEOLEF_set_coordinate_system(distributed)
_RHEOLEF_set_dimension(distributed)
_RHEOLEF_set_serial_number(distributed)
_RHEOLEF_set_name(distributed)
_RHEOLEF_build_by_subdividing(distributed)
#ifdef TODO
_RHEOLEF_build_from_data(distributed)
#endif // TODO
#endif // _RHEOLEF_HAVE_MPI
#undef _RHEOLEF_set_nodes
#undef _RHEOLEF_reset_order
#undef _RHEOLEF_set_coordinate_system
#undef _RHEOLEF_set_dimension
#undef _RHEOLEF_set_name
#undef _RHEOLEF_build_from_data
#undef _RHEOLEF_build_by_subdividing
// ==============================================================================
// inlined: geo<T,M>
// ==============================================================================
template <class T, class M>
inline
idiststream&
operator>> (idiststream& ips, geo_basic<T,M>& omega)
{
return omega.get (ips);
}
template <class T, class M>
inline
odiststream&
operator<< (odiststream& ops, const geo_basic<T,M>& omega)
{
return omega.put (ops);
}
} // namespace rheolef
#endif // _RHEOLEF_GEO_H
|