/usr/include/rheolef/hack_array.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | #ifndef _RHEOLEF_HACK_ARRAY_H
#define _RHEOLEF_HACK_ARRAY_H
//
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// massive hack vector for all T=geo_element of the same variant & order
// => elements have exactly the same size
// Since the order is known only at at run time, geo_element size is unknown at
// compile time and the disarray<T> cannot be used.
//
// Nevertheless, the situation is similar at run time:
// - elements can be stored contiguously in memory
// - mpi communications can be efficienly performed, as for known MPI_Datatype
//
#include "rheolef/disarray.h"
namespace rheolef {
// -------------------------------------------------------------
// iterator
// -------------------------------------------------------------
template <class T, class Ref, class Ptr, class Raw, class RawIterator>
struct hack_array_iterator {
typedef hack_array_iterator<T, Ref, Ptr, Raw, RawIterator> _self;
typedef hack_array_iterator<T, T&, T*, Raw, Raw*> _iterator;
typedef std::bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef Ref reference;
typedef Ptr pointer;
typedef typename T::size_type size_type;
typedef typename std::iterator_traits<RawIterator>::difference_type difference_type;
hack_array_iterator ()
: _raw_iter(), _incr() {}
hack_array_iterator (RawIterator raw_iter, size_type incr)
: _raw_iter(raw_iter), _incr(incr) {}
hack_array_iterator (const _iterator& y)
: _raw_iter(y._raw_iter), _incr(y._incr) {}
_self& operator++() { _raw_iter += _incr; return *this; }
_self operator++(int) { _self tmp = *this; operator++(); return tmp; }
pointer operator->() const { return reinterpret_cast<pointer>(_raw_iter); }
reference operator* () const { return *(reinterpret_cast<pointer>(_raw_iter)); }
reference operator[] (size_type i) const { return *(reinterpret_cast<pointer>(_raw_iter + i*_incr)); }
_self& operator+= (size_type n) { _raw_iter += n*_incr; return *this; }
_self& operator-= (size_type n) { _raw_iter -= n*_incr; return *this; }
_self operator+ (size_type n) const { _self tmp = *this; tmp += n; return tmp; }
_self operator- (size_type n) const { _self tmp = *this; tmp -= n; return tmp; }
bool operator== (const _self& y) const { return _raw_iter == y._raw_iter && _incr == y._incr; }
bool operator!= (const _self& y) const { return ! operator== (y); }
// data :
RawIterator _raw_iter;
size_type _incr;
};
// -------------------------------------------------------------
// the sequential representation
// -------------------------------------------------------------
template <class T, class A>
class hack_array_seq_rep : public disarray_rep<typename T::raw_type,sequential,A> {
public:
// typedefs:
typedef disarray_rep<typename T::raw_type, sequential, A> base;
typedef T raw_value_type;
typedef typename T::generic_type value_type;
typedef typename T::generic_type generic_value_type;
typedef typename T::automatic_type automatic_value_type;
typedef A allocator_type;
typedef typename T::parameter_type parameter_type;
typedef typename generic_value_type::raw_type raw_type;
typedef typename base::size_type size_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef reference dis_reference;
typedef sequential memory_type;
typedef hack_array_iterator<generic_value_type, generic_value_type&, generic_value_type*, raw_type, raw_type*>
iterator;
typedef hack_array_iterator<generic_value_type, const generic_value_type&, const generic_value_type*, raw_type, const raw_type*>
const_iterator;
// allocators:
hack_array_seq_rep (const A& alloc = A());
hack_array_seq_rep (const distributor& ownership, const parameter_type& param, const A& alloc = A());
void resize (const distributor& ownership, const parameter_type& param);
hack_array_seq_rep (size_type n, const parameter_type& param, const A& alloc = A());
void resize (size_type n, const parameter_type& param);
// accesors & modifiers
A get_allocator() const { return base::get_allocator(); }
const distributor& ownership() const { return _ownership; }
const communicator& comm() const { return ownership().comm(); }
size_type size() const { return ownership().size(); }
size_type dis_size () const { return ownership().dis_size(); }
const generic_value_type& operator[] (size_type ie) const {
const raw_type *p = base::begin().operator->() + ie*_value_size;
const T* q = (const T*)p;
return *q;
}
generic_value_type& operator[] (size_type ie) {
raw_type *p = base::begin().operator->() + ie*_value_size;
T* q = (T*)p;
return *q;
}
iterator begin() { return iterator(base::begin().operator->(), _value_size); }
const_iterator begin() const { return const_iterator(base::begin().operator->(), _value_size); }
iterator end() { return iterator(base::begin().operator->() + size()*_value_size, _value_size); }
const_iterator end() const { return const_iterator(base::begin().operator->() + size()*_value_size, _value_size); }
// i/o:
idiststream& get_values (idiststream& ips);
odiststream& put_values (odiststream& ops) const;
template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
protected:
// internals:
void _init (const distributor& ownership, const parameter_type& param);
// data:
distributor _ownership;
parameter_type _parameter;
size_type _value_size;
size_type _data_size;
};
// -------------------------------------------------------------
// the distributed representation
// -------------------------------------------------------------
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
class hack_array_mpi_rep : public hack_array_seq_rep<T,A> {
public:
// typedefs:
typedef hack_array_seq_rep<T,A> base;
typedef typename base::base raw_base;
typedef typename base::size_type size_type;
typedef typename base::value_type value_type;
typedef typename base::allocator_type allocator_type;
typedef typename base::generic_value_type generic_value_type;
typedef typename base::automatic_value_type automatic_value_type;
typedef typename base::raw_type raw_type;
typedef typename base::parameter_type parameter_type;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef distributed memory_type;
typedef std::map <size_type, automatic_value_type, std::less<size_type>, heap_allocator<std::pair<size_type,automatic_value_type> > >
scatter_map_type;
struct dis_reference {
dis_reference (hack_array_mpi_rep<T,A>& x, size_type dis_i)
: _x(x), _dis_i(dis_i) {}
dis_reference& operator= (const generic_value_type& value) {
_x.set_dis_entry (_dis_i, value);
return *this;
}
// data:
protected:
hack_array_mpi_rep<T,A>& _x;
size_type _dis_i;
};
// allocators:
hack_array_mpi_rep (const A& alloc = A());
hack_array_mpi_rep (const distributor& ownership, const parameter_type& param, const A& alloc = A());
void resize (const distributor& ownership, const parameter_type& param);
// accessors & modifiers:
A get_allocator() const { return base::get_allocator(); }
const distributor& ownership() const { return base::_ownership; }
const communicator& comm() const { return ownership().comm(); }
size_type dis_size () const { return ownership().dis_size(); }
size_type size() const { return base::size(); }
const generic_value_type& operator[] (size_type ie) const { return base::operator[] (ie); }
generic_value_type& operator[] (size_type ie) { return base::operator[] (ie); }
iterator begin() { return base::begin(); }
const_iterator begin() const { return base::begin(); }
iterator end() { return base::end(); }
const_iterator end() const { return base::end(); }
dis_reference dis_entry (size_type dis_i) { return dis_reference (*this, dis_i); }
void dis_entry_assembly_begin ();
void dis_entry_assembly_end ();
void dis_entry_assembly () { dis_entry_assembly_begin (); dis_entry_assembly_end (); }
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const;
template<class Set, class Map>
void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {
ext_idx_map.clear();
append_dis_entry (ext_idx_set, ext_idx_map);
}
template<class Set>
void append_dis_indexes (const Set& ext_idx_set) const { append_dis_entry (ext_idx_set, _ext_x); }
template<class Set>
void set_dis_indexes (const Set& ext_idx_set) { get_dis_entry (ext_idx_set, _ext_x); }
void update_dis_entries() const;
const_reference dis_at (size_type dis_i) const;
template <class A2>
void repartition ( // old_numbering for *this
const disarray_rep<size_type,distributed,A2>& partition, // old_ownership
hack_array_mpi_rep<T,A>& new_array, // new_ownership (created)
disarray_rep<size_type,distributed,A2>& old_numbering, // new_ownership
disarray_rep<size_type,distributed,A2>& new_numbering) const; // old_ownership
#ifdef TODO
void permutation_apply ( // old_numbering for *this
const disarray_rep<size_type,distributed,>& new_numbering, // old_ownership
disarray_rep<T,distributed>& new_array) const; // new_ownership (already allocated)
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
disarray_rep<size_type,distributed>& inew2dis_iold) const; // new_ownership
#endif // TODO
// get all external pairs (dis_i, values):
const scatter_map_type& get_dis_map_entries() const { return _ext_x; }
// i/o:
idiststream& get_values (idiststream& ips);
odiststream& put_values (odiststream& ops) const;
template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
template <class PutFunction, class Permutation>
odiststream& permuted_put_values (
odiststream& ops,
const Permutation& perm,
PutFunction put_element) const;
protected:
void set_dis_entry (size_type dis_i, const generic_value_type& val);
// typedefs:
/** 1) stash: store data before assembly() communications:
*/
typedef std::map <size_type, raw_type, std::less<size_type>, heap_allocator<std::pair<size_type,raw_type> > > stash_map_type;
/** 2) message: for communication during assembly_begin(), assembly_end()
*/
struct message_type {
std::list<std::pair<size_type,mpi::request>,A> waits;
std::vector<std::pair<size_type,raw_type>,A> data;
};
/** 3) scatter (get_entry): specialized versions for T=container and T=simple type
*/
protected:
// data:
stash_map_type _stash; // for assembly msgs:
message_type _send;
message_type _receive;
size_type _receive_max_size;
mutable scatter_map_type _ext_x; // for ext values (scatter)
};
#endif // _RHEOLEF_HAVE_MPI
/*Class:hack_array
NAME: hack_array - container in distributed environment (@PACKAGE@-@VERSION@)
SYNOPSYS:
@noindent
STL-like vector container for a distributed memory machine model.
Contrarily to disarray<T>, here T can have a size only known at compile time.
This class is used when T is a geo_element raw class, i.e. T=geo_element_e_raw.
The size of the geo_element depends upon the oder and is known only at run-time.
For efficiency purpose, the hack_array allocate all geo_elements of the
same variant (e.g. edge) and order in a contiguous area, since the coreesponding
element size is constant.
EXAMPLE:
@noindent
A sample usage of the class is:
@example
std::pair<size_t,size_t> param (reference_element::t, 3); // triangle, order=3
hack_array<geo_element_raw> x (distributor(100), param);
@end example
The hack_array<T> interface is similar to those of the disarray<T> one.
OBJECT REQUIREMENT:
There are many pre-requises for the template objet type T:
@example
class T : public T::generic_type @{
typedef variant_type;
typedef raw_type;
typedef genetic_type;
typedef automatic_type;
static const variant_type _variant;
static size_t _data_size(const parameter_type& param);
static size_t _value_size(const parameter_type& param);
@};
class T::automatic_type : public T::generic_type @{
automatic_type (const parameter_type& param);
@};
class T::generic_type @{
typedef raw_type;
typedef iterator;
typedef const_iterator;
iterator _data_begin();
const_iterator _data_begin() const;
@};
ostream& operator<< (ostream&, const T::generic_type&);
@end example
AUTHOR: Pierre.Saramito@imag.fr
End:
*/
template <class T, class M = rheo_default_memory_model, class A = std::allocator<T> >
class hack_array {
public:
typedef M memory_type;
typedef typename std::vector<T,A>::size_type size_type;
typedef typename std::vector<T,A>::iterator iterator;
typedef typename std::vector<T,A>::const_iterator const_iterator;
};
//<verbatim:
template <class T, class A>
class hack_array<T,sequential,A> : public smart_pointer<hack_array_seq_rep<T,A> > {
public:
// typedefs:
typedef hack_array_seq_rep<T,A> rep;
typedef smart_pointer<rep> base;
typedef sequential memory_type;
typedef typename rep::size_type size_type;
typedef typename rep::value_type value_type;
typedef typename rep::reference reference;
typedef typename rep::dis_reference dis_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_reference const_reference;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::parameter_type parameter_type;
// allocators:
hack_array (const A& alloc = A());
hack_array (size_type loc_size, const parameter_type& param, const A& alloc = A());
void resize (const distributor& ownership, const parameter_type& param);
hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
void resize (size_type loc_size, const parameter_type& param);
// local accessors & modifiers:
A get_allocator() const { return base::data().get_allocator(); }
size_type size () const { return base::data().size(); }
size_type dis_size () const { return base::data().dis_size(); }
const distributor& ownership() const { return base::data().ownership(); }
const communicator& comm() const { return ownership().comm(); }
reference operator[] (size_type i) { return base::data().operator[] (i); }
const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
const_reference dis_at (size_type dis_i) const { return base::data().operator[] (dis_i); }
iterator begin() { return base::data().begin(); }
const_iterator begin() const { return base::data().begin(); }
iterator end() { return base::data().end(); }
const_iterator end() const { return base::data().end(); }
// global accessors (for compatibility with distributed interface):
template<class Set> void append_dis_indexes (const Set& ext_idx_set) const {}
void update_dis_entries() const {}
// global modifiers (for compatibility with distributed interface):
dis_reference dis_entry (size_type dis_i) { return operator[] (dis_i); }
void dis_entry_assembly() {}
template<class SetOp>
void dis_entry_assembly(SetOp my_set_op) {}
template<class SetOp>
void dis_entry_assembly_begin (SetOp my_set_op) {}
template<class SetOp>
void dis_entry_assembly_end (SetOp my_set_op) {}
// apply a partition:
#ifdef TODO
template<class RepSize>
void repartition ( // old_numbering for *this
const RepSize& partition, // old_ownership
hack_array<T,sequential,A>& new_array, // new_ownership (created)
RepSize& old_numbering, // new_ownership
RepSize& new_numbering) const // old_ownership
{ return base::data().repartition (partition, new_array, old_numbering, new_numbering); }
template<class RepSize>
void permutation_apply ( // old_numbering for *this
const RepSize& new_numbering, // old_ownership
hack_array<T,sequential,A>& new_array) const // new_ownership (already allocated)
{ return base::data().permutation_apply (new_numbering, new_array); }
#endif // TODO
// i/o:
odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
idiststream& get_values (idiststream& ips) { return base::data().get_values(ips); }
template <class GetFunction>
idiststream& get_values (idiststream& ips, GetFunction get_element) { return base::data().get_values(ips, get_element); }
template <class PutFunction>
odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
#ifdef TODO
void dump (std::string name) const { return base::data().dump(name); }
#endif // TODO
};
//>verbatim:
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
const A& alloc)
: base(new_macro(rep(alloc)))
{
}
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
size_type loc_size,
const parameter_type& param,
const A& alloc)
: base(new_macro(rep(loc_size,param,alloc)))
{
}
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
const distributor& ownership,
const parameter_type& param,
const A& alloc)
: base(new_macro(rep(ownership,param,alloc)))
{
}
template <class T, class A>
inline
void
hack_array<T,sequential,A>::resize (
size_type loc_size,
const parameter_type& param)
{
base::data().resize (loc_size,param);
}
template <class T, class A>
inline
void
hack_array<T,sequential,A>::resize (
const distributor& ownership,
const parameter_type& param)
{
base::data().resize (ownership,param);
}
#ifdef _RHEOLEF_HAVE_MPI
//<verbatim:
template <class T, class A>
class hack_array<T,distributed,A> : public smart_pointer<hack_array_mpi_rep<T,A> > {
public:
// typedefs:
typedef hack_array_mpi_rep<T,A> rep;
typedef smart_pointer<rep> base;
typedef distributed memory_type;
typedef typename rep::size_type size_type;
typedef typename rep::value_type value_type;
typedef typename rep::reference reference;
typedef typename rep::dis_reference dis_reference;
typedef typename rep::iterator iterator;
typedef typename rep::parameter_type parameter_type;
typedef typename rep::const_reference const_reference;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::scatter_map_type scatter_map_type;
// allocators:
hack_array (const A& alloc = A());
hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
void resize (const distributor& ownership, const parameter_type& param);
// local accessors & modifiers:
A get_allocator() const { return base::data().get_allocator(); }
size_type size () const { return base::data().size(); }
size_type dis_size () const { return base::data().dis_size(); }
const distributor& ownership() const { return base::data().ownership(); }
const communicator& comm() const { return base::data().comm(); }
reference operator[] (size_type i) { return base::data().operator[] (i); }
const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
iterator begin() { return base::data().begin(); }
const_iterator begin() const { return base::data().begin(); }
iterator end() { return base::data().end(); }
const_iterator end() const { return base::data().end(); }
// global accessor:
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().append_dis_entry (ext_idx_set, ext_idx_map); }
template<class Set, class Map>
void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().get_dis_entry (ext_idx_set, ext_idx_map); }
template<class Set>
void append_dis_indexes (const Set& ext_idx_set) const { base::data().append_dis_indexes (ext_idx_set); }
template<class Set>
void set_dis_indexes (const Set& ext_idx_set) { base::data().set_dis_indexes (ext_idx_set); }
const_reference dis_at (size_type dis_i) const { return base::data().dis_at (dis_i); }
// get all external pairs (dis_i, values):
const scatter_map_type& get_dis_map_entries() const { return base::data().get_dis_map_entries(); }
void update_dis_entries() const { base::data().update_dis_entries(); }
// global modifiers (for compatibility with distributed interface):
dis_reference dis_entry (size_type dis_i) { return base::data().dis_entry(dis_i); }
void dis_entry_assembly() { return base::data().dis_entry_assembly(); }
template<class SetOp>
void dis_entry_assembly (SetOp my_set_op) { return base::data().dis_entry_assembly (my_set_op); }
template<class SetOp>
void dis_entry_assembly_begin (SetOp my_set_op) { return base::data().dis_entry_assembly_begin (my_set_op); }
template<class SetOp>
void dis_entry_assembly_end (SetOp my_set_op) { return base::data().dis_entry_assembly_end (my_set_op); }
// apply a partition:
template<class RepSize>
void repartition ( // old_numbering for *this
const RepSize& partition, // old_ownership
hack_array<T,distributed>& new_array, // new_ownership (created)
RepSize& old_numbering, // new_ownership
RepSize& new_numbering) const // old_ownership
{ return base::data().repartition (partition.data(), new_array.data(), old_numbering.data(), new_numbering.data()); }
#ifdef TODO
template<class RepSize>
void permutation_apply ( // old_numbering for *this
const RepSize& new_numbering, // old_ownership
hack_array<T,distributed,A>& new_array) const // new_ownership (already allocated)
{ base::data().permutation_apply (new_numbering.data(), new_array.data()); }
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
hack_array<size_type,distributed,A>& inew2dis_iold) const // new_ownership
{ base::data().reverse_permutation (inew2dis_iold.data()); }
#endif // TODO
// i/o:
odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
idiststream& get_values (idiststream& ips) { return base::data().get_values(ips); }
#ifdef TODO
void dump (std::string name) const { return base::data().dump(name); }
#endif // TODO
template <class GetFunction>
idiststream& get_values (idiststream& ips, GetFunction get_element)
{ return base::data().get_values(ips, get_element); }
template <class PutFunction>
odiststream& put_values (odiststream& ops, PutFunction put_element) const
{ return base::data().put_values(ops, put_element); }
template <class PutFunction, class Permutation>
odiststream& permuted_put_values (
odiststream& ops,
const Permutation& perm,
PutFunction put_element) const
{ return base::data().permuted_put_values (ops, perm.data(), put_element); }
};
//>verbatim:
template <class T, class A>
inline
hack_array<T,distributed,A>::hack_array (
const A& alloc)
: base(new_macro(rep(alloc)))
{
}
template <class T, class A>
inline
hack_array<T,distributed,A>::hack_array (
const distributor& ownership,
const parameter_type& param,
const A& alloc)
: base(new_macro(rep(ownership,param,alloc)))
{
}
template <class T, class A>
inline
void
hack_array<T,distributed,A>::resize (
const distributor& ownership,
const parameter_type& param)
{
base::data().resize (ownership,param);
}
#endif // _RHEOLEF_HAVE_MPI
// -------------------------------------------------------------
// i/o with operator<< & >>
// -------------------------------------------------------------
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips, hack_array<T,sequential,A>& x)
{
return x.get_values(ips);
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const hack_array<T,sequential,A>& x)
{
return x.put_values(ops);
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips, hack_array<T,distributed,A>& x)
{
return x.get_values(ips);
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const hack_array<T,distributed,A>& x)
{
return x.put_values(ops);
}
#endif // _RHEOLEF_HAVE_MPI
}// namespace rheolef
// -------------------------------------------------------------
// not inlined : longer code
// -------------------------------------------------------------
#include "rheolef/hack_array_seq.icc"
#include "rheolef/hack_array_mpi.icc"
#endif // _RHEOLEF_HACK_ARRAY_H
|