/usr/include/rheolef/hack_array_mpi.icc is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | ///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/config.h"
#ifdef _RHEOLEF_HAVE_MPI
#include "rheolef/hack_array.h"
namespace rheolef {
// ===============================================================
// allocator
// ===============================================================
template<class T, class A>
hack_array_mpi_rep<T,A>::hack_array_mpi_rep (const A& alloc)
: base(alloc),
_stash(),
_send(),
_receive(),
_receive_max_size(),
_ext_x()
{
}
template<class T, class A>
hack_array_mpi_rep<T,A>::hack_array_mpi_rep (const distributor& ownership, const parameter_type& param, const A& alloc)
: base(ownership,param,alloc),
_stash(),
_send(),
_receive(),
_receive_max_size(),
_ext_x()
{
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::resize (const distributor& ownership, const parameter_type& param)
{
base::resize (ownership, param);
_stash.clear();
_send.waits.clear();
_send.data.clear();
_receive.waits.clear();
_receive.data.clear();
_receive_max_size = 0;
}
// ===============================================================
// assembly
// ===============================================================
template <class T, class A>
void
hack_array_mpi_rep<T,A>::set_dis_entry (size_type dis_i, const generic_value_type& val)
{
if (ownership().is_owned (dis_i)) {
size_type i = dis_i - ownership().first_index();
operator[](i) = val;
return;
}
assert_macro (dis_i < ownership().dis_size(), "index "<<dis_i
<< " is out of range [0:" << ownership().dis_size() << "[");
// loop on the raw data vector (fixedsize, run-time known)
size_type dis_iraw = base::_value_size*dis_i + 1;
typename generic_value_type::const_iterator iter = val._data_begin();
for (size_type loc_iraw = 0, loc_nraw = val._data_size(); loc_iraw < loc_nraw; loc_iraw++, iter++) {
_stash.insert (std::pair<const size_type,raw_type>(dis_iraw + loc_iraw, *iter));
}
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::dis_entry_assembly_begin ()
{
_receive_max_size = mpi_assembly_begin (
_stash,
make_apply_iterator(_stash.begin(), first_op<typename stash_map_type::value_type>()),
make_apply_iterator(_stash.end(), first_op<typename stash_map_type::value_type>()),
raw_base::ownership(),
_receive,
_send);
_stash.clear();
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::dis_entry_assembly_end()
{
mpi_assembly_end (
_receive,
_send,
_receive_max_size,
disarray_make_store(
raw_base::begin() - raw_base::ownership().first_index(),
set_op<raw_type,raw_type>(),
size_type(0),
std::false_type()));
_send.waits.clear();
_send.data.clear();
_receive.waits.clear();
_receive.data.clear();
_receive_max_size = 0;
}
// ===============================================================
// scatter
// ===============================================================
/** @brief get values from ext_idx_set, that are managed by another proc
* new version: instead of sending automatic_data_type, send data_size*raw_value_type to boost::mpi
* => should work with mpi::boost and use simple MPI_Datatype instead of mallocated complex one
*/
template <class T, class A>
template <class Set, class Map>
void
hack_array_mpi_rep<T,A>::append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const
{
// 0) declare the local context for raw data
scatter_message<std::vector<raw_type> > raw_from;
scatter_message<std::vector<raw_type> > raw_to;
// 1) convert set to vector, for direct acess & multiply by data_size
std::vector<size_type> raw_ext_idx (base::_data_size*ext_idx_set.size());
typename Set::const_iterator iter = ext_idx_set.begin();
for (size_type i = 0; i < ext_idx_set.size(); i++, iter++) {
size_type idx = *iter;
for (size_type l = 0; l < base::_data_size; l++) {
size_type raw_i = base::_data_size*i + l;
size_type raw_idx = base::_value_size*idx + l + (base::_value_size - base::_data_size);
raw_ext_idx [raw_i] = raw_idx;
}
}
// 2) declare id[i]=i for scatter
std::vector<size_type> raw_id (raw_ext_idx.size());
for (size_type i = 0; i < raw_id.size(); i++) raw_id[i] = i;
// 3) init scatter
size_type raw_dis_size = base::_value_size*ownership().dis_size();
size_type raw_size = base::_value_size*ownership().size();
distributor raw_ownership (raw_dis_size, ownership().comm(), raw_size);
distributor::tag_type tag_init = distributor::get_new_tag();
mpi_scatter_init(
raw_ext_idx.size(),
raw_ext_idx.begin().operator->(),
raw_id.size(),
raw_id.begin().operator->(),
raw_ownership.dis_size(),
raw_ownership.begin().operator->(),
tag_init,
raw_ownership.comm(),
raw_from,
raw_to);
// 4) begin scatter: send local data to others and get ask for missing data
std::vector<raw_type> raw_buffer (raw_ext_idx.size());
distributor::tag_type tag = distributor::get_new_tag();
// access to an itrator to raw_data (behaves as a pointer on raw_type)
typedef typename base::base raw_base;
typename raw_base::const_iterator raw_begin = raw_base::begin();
mpi_scatter_begin (
raw_begin,
raw_buffer.begin().operator->(),
raw_from,
raw_to,
set_op<raw_type,raw_type>(),
tag,
raw_ownership.comm());
// 5) end scatter: receive missing data
mpi_scatter_end (
raw_begin,
raw_buffer.begin().operator->(),
raw_from,
raw_to,
set_op<raw_type,raw_type>(),
tag,
raw_ownership.comm());
// 6) unpack raw data: build the associative container: pair (ext_idx ; data)
iter = ext_idx_set.begin();
for (size_type i = 0; i < ext_idx_set.size(); i++, iter++) {
size_type idx = *iter;
automatic_value_type value (base::_parameter);
typename automatic_value_type::iterator p = value._data_begin();
for (size_type l = 0; l < base::_data_size; l++, p++) {
size_type raw_i = base::_data_size*i + l;
*p = raw_buffer[raw_i];
}
ext_idx_map.insert (std::make_pair (idx, value));
}
}
template <class T, class A>
typename hack_array_mpi_rep<T,A>::const_reference
hack_array_mpi_rep<T,A>::dis_at (const size_type dis_i) const
{
if (ownership().is_owned(dis_i)) {
size_type i = dis_i - ownership().first_index();
return operator[](i);
}
typename scatter_map_type::const_iterator iter = _ext_x.find (dis_i);
check_macro (iter != _ext_x.end(), "unexpected external index="<<dis_i);
return (*iter).second;
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::update_dis_entries() const
{
std::set<size_type> ext_i;
for (typename scatter_map_type::const_iterator
iter = _ext_x.begin(),
last = _ext_x.end(); iter != last; ++iter) {
ext_i.insert ((*iter).first);
}
get_dis_entry (ext_i, _ext_x);
}
// ===============================================================
// put & get
// ===============================================================
template <class T, class A>
template <class PutFunction>
odiststream&
hack_array_mpi_rep<T,A>::put_values (odiststream& ops, PutFunction put_element) const
{
distributor::tag_type tag = distributor::get_new_tag();
std::ostream& os = ops.os();
// determine maximum message to arrive
size_type max_size;
mpi::reduce(comm(), size(), max_size, mpi::maximum<size_type>(), 0);
size_type io_proc = odiststream::io_proc();
if (ownership().process() == io_proc) {
base::put_values (ops, put_element);
// then, receive and print messages
std::vector<raw_type> raw_values (max_size*base::_data_size, std::numeric_limits<raw_type>::max());
for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
if (iproc == io_proc) continue;
size_type loc_sz_i = ownership().size(iproc);
if (loc_sz_i == 0) continue;
mpi::status status = comm().recv(iproc, tag, raw_values.begin().operator->(), raw_values.size());
boost::optional<int> n_data_opt = status.count<raw_type>();
check_macro (n_data_opt, "receive failed");
size_type n_data = n_data_opt.get();
check_macro (n_data == loc_sz_i*base::_data_size, "unexpected receive message size");
typename T::automatic_type tmp (base::_parameter);
for (size_type i = 0; i < loc_sz_i; i++) {
typename T::iterator p = tmp._data_begin();
for (size_type iloc = 0; iloc < base::_data_size; iloc++, p++) {
*p = raw_values [i*base::_data_size + iloc];
}
put_element (os, tmp);
os << std::endl;
}
}
os << std::flush;
} else {
if (size() != 0) {
std::vector<raw_type> raw_values (size()*base::_data_size, std::numeric_limits<raw_type>::max());
for (size_type i = 0, n = size(); i < n; i++) {
for (size_type j = 0; j < base::_data_size; j++) {
raw_values [i*base::_data_size + j] = raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size));
}
}
comm().send(io_proc, tag, raw_values.begin().operator->(), raw_values.size());
}
}
return ops;
}
template <class T, class A>
odiststream&
hack_array_mpi_rep<T,A>::put_values (odiststream& ops) const
{
return put_values (ops, _disarray_put_element_type<generic_value_type>());
}
template <class T, class A>
template <class GetFunction>
idiststream&
hack_array_mpi_rep<T,A>::get_values (idiststream& ips, GetFunction get_element)
{
distributor::tag_type tag = distributor::get_new_tag();
std::istream& is = ips.is();
size_type my_proc = ownership().process();
size_type io_proc = odiststream::io_proc();
size_type size_max = 1;
for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
size_max = std::max (size_max, ownership().size(iproc));
}
distributor io_ownership (size_max, comm(), (my_proc == io_proc) ? size_max : 0);
hack_array_seq_rep<T,A> data_proc_j (io_ownership, base::_parameter);
if (my_proc == io_proc) {
// load first chunk associated to proc 0
check_macro (load_chunk (is, begin(), end(), get_element), "read failed on input stream.");
if (ownership().n_process() > 1) {
// read in other chuncks and send to other processors
// determine maximum chunck owned by other
std::vector<raw_type> raw_values (size_max*base::_data_size, std::numeric_limits<raw_type>::max());
typename hack_array_seq_rep<T,A>::iterator start_j = data_proc_j.begin();
// bizarre qu'on lise ts les blocs dans la meme zone de memoire
// et qu'on attende pas que ce soit envoye pour ecraser par le suivant ?
for (size_type jproc = 0; jproc < ownership().n_process(); jproc++) {
if (jproc == io_proc) continue;
// load first chunk associated to proc j
size_type loc_sz_j = ownership().size(jproc);
if (loc_sz_j == 0) continue;
typename hack_array_seq_rep<T,A>::iterator last_j = start_j + loc_sz_j;
check_macro (load_chunk (is, start_j, last_j, get_element), "read failed on input stream.");
for (size_type i = 0, n = loc_sz_j; i < n; i++) {
for (size_type j = 0; j < base::_data_size; j++) {
raw_values [i*base::_data_size + j] = data_proc_j.raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size));
}
}
comm().send (jproc, tag, raw_values.begin().operator->(), loc_sz_j*base::_data_size);
}
}
} else {
if (size() != 0) {
std::vector<raw_type> raw_values (size()*base::_data_size, std::numeric_limits<raw_type>::max());
comm().recv (io_proc, tag, raw_values.begin().operator->(), size()*base::_data_size);
for (size_type i = 0, n = size(); i < n; i++) {
for (size_type j = 0; j < base::_data_size; j++) {
raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size))
= raw_values [i*base::_data_size + j];
}
}
}
}
return ips;
}
template <class T, class A>
idiststream&
hack_array_mpi_rep<T,A>::get_values (idiststream& ips)
{
return get_values (ips, _disarray_get_element_type<generic_value_type>());
}
template <class T, class A>
template <class PutFunction, class Permutation>
odiststream&
hack_array_mpi_rep<T,A>::permuted_put_values (
odiststream& ops,
const Permutation& perm,
PutFunction put_element) const
{
// NOTE: could be merged with disarray::permuted_put_value : same code exactly
assert_macro (perm.size() == size(), "permutation size does not match");
size_type io_proc = odiststream::io_proc();
size_type my_proc = comm().rank();
distributor io_ownership (dis_size(), comm(), (my_proc == io_proc) ? dis_size() : 0);
hack_array_mpi_rep<T,A> perm_x (io_ownership, base::_parameter);
for (size_type i = 0, n = size(); i < n; i++) {
perm_x.dis_entry (perm[i]) = operator[](i);
}
perm_x.dis_entry_assembly();
perm_x.hack_array_seq_rep<T,A>::put_values (ops, put_element);
return ops;
}
// ===============================================================
// repartition
// ===============================================================
template <class T, class A>
template <class A2>
void
hack_array_mpi_rep<T,A>::repartition ( // old_numbering for *this
const disarray_rep<size_type,distributed,A2>& partition, // old_ownership
hack_array_mpi_rep<T,A>& new_array, // new_ownership
disarray_rep<size_type,distributed,A2>& old_numbering, // new_ownership
disarray_rep<size_type,distributed,A2>& new_numbering) const // old_ownership
{
using namespace std;
communicator comm = ownership().comm();
size_type nproc = comm.size();
size_type my_proc = comm.rank();
vector<size_type> send_local_elt_size (nproc, 0);
typename disarray_rep<size_type,distributed,A2>::const_iterator iter_part = partition.begin();
for (size_type ie = 0; ie < partition.size(); ie++, iter_part++) {
send_local_elt_size [*iter_part]++;
}
vector<size_type> recv_local_elt_size (nproc, 0);
all_to_all (comm, send_local_elt_size, recv_local_elt_size);
vector<size_type> recv_local_elt_start (nproc+1);
recv_local_elt_start [0] = 0;
for (size_type iproc = 0; iproc < nproc; iproc++) {
recv_local_elt_start [iproc+1] = recv_local_elt_start [iproc] + recv_local_elt_size[iproc];
}
vector<size_type> send_local_elt_start (nproc);
all_to_all (comm, recv_local_elt_start.begin().operator->(), send_local_elt_start.begin().operator->());
size_type new_local_n_elt = recv_local_elt_start [nproc];
size_type global_n_elt = dis_size();
// re-distribute data:
distributor new_elt_ownership (global_n_elt, comm, new_local_n_elt);
new_array.resize (new_elt_ownership, base::_parameter); // CHANGE FROM ARRAY here
old_numbering.resize (new_elt_ownership, numeric_limits<size_type>::max());
new_numbering.resize (ownership(), numeric_limits<size_type>::max());
iter_part = partition.begin();
const_iterator iter_elt = begin();
typename disarray_rep<size_type,distributed,A2>::iterator iter_new_num_elt = new_numbering.begin();
for (size_type ie = 0, ne = partition.size(); ie < ne; ie++, iter_part++, iter_elt++, iter_new_num_elt++) {
size_type iproc = *iter_part;
const generic_value_type& x = *iter_elt; // CHANGE FROM ARRAY here
size_type new_global_ie = new_elt_ownership[iproc] + send_local_elt_start[iproc];
new_array.dis_entry (new_global_ie) = x;
*iter_new_num_elt = new_global_ie;
size_type old_global_ie = ownership()[my_proc] + ie;
old_numbering.dis_entry (new_global_ie) = old_global_ie;
send_local_elt_start[iproc]++;
}
new_array.dis_entry_assembly();
old_numbering.template dis_entry_assembly<typename default_set_op<size_type>::type>();
}
} // namespace rheolef
#endif // _RHEOLEF_HAVE_MPI
|