This file is indexed.

/usr/include/rheolef/hack_array_mpi.icc is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
#include "rheolef/config.h"
#ifdef _RHEOLEF_HAVE_MPI

#include "rheolef/hack_array.h"

namespace rheolef {

// ===============================================================
// allocator
// ===============================================================
template<class T, class A>
hack_array_mpi_rep<T,A>::hack_array_mpi_rep (const A& alloc)
  : base(alloc),
    _stash(),
    _send(),
    _receive(),
    _receive_max_size(),
    _ext_x()
{
}
template<class T, class A>
hack_array_mpi_rep<T,A>::hack_array_mpi_rep (const distributor& ownership, const parameter_type& param, const A& alloc)
  : base(ownership,param,alloc),
    _stash(),
    _send(),
    _receive(),
    _receive_max_size(),
    _ext_x()
{
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::resize (const distributor& ownership, const parameter_type& param)
{
    base::resize (ownership, param);
    _stash.clear();
    _send.waits.clear();
    _send.data.clear();
    _receive.waits.clear();
    _receive.data.clear();
    _receive_max_size = 0;
}
// ===============================================================
// assembly
// ===============================================================
template <class T, class A>
void
hack_array_mpi_rep<T,A>::set_dis_entry (size_type dis_i, const generic_value_type& val)
{
  if (ownership().is_owned (dis_i)) {
    size_type i = dis_i - ownership().first_index();
    operator[](i) = val;
    return;
  }
  assert_macro (dis_i < ownership().dis_size(), "index "<<dis_i
	<< " is out of range [0:" << ownership().dis_size() << "[");
  // loop on the raw data vector (fixedsize, run-time known)
  size_type dis_iraw = base::_value_size*dis_i + 1;
  typename generic_value_type::const_iterator iter = val._data_begin();
  for (size_type loc_iraw = 0, loc_nraw = val._data_size(); loc_iraw < loc_nraw; loc_iraw++, iter++) {
    _stash.insert (std::pair<const size_type,raw_type>(dis_iraw + loc_iraw, *iter));
  }
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::dis_entry_assembly_begin ()
{
    _receive_max_size = mpi_assembly_begin (
        _stash,
        make_apply_iterator(_stash.begin(), first_op<typename stash_map_type::value_type>()),
        make_apply_iterator(_stash.end(),   first_op<typename stash_map_type::value_type>()),
        raw_base::ownership(),
        _receive,
        _send);

    _stash.clear();
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::dis_entry_assembly_end()
{
    mpi_assembly_end (
        _receive,
        _send,
        _receive_max_size,
        disarray_make_store(
            raw_base::begin() - raw_base::ownership().first_index(),
            set_op<raw_type,raw_type>(),
            size_type(0),
            std::false_type()));

    _send.waits.clear();
    _send.data.clear();
    _receive.waits.clear();
    _receive.data.clear();
    _receive_max_size = 0;
}
// ===============================================================
// scatter
// ===============================================================
/** @brief get values from ext_idx_set, that are managed by another proc
 * new version: instead of sending automatic_data_type, send data_size*raw_value_type to boost::mpi
 * => should work with mpi::boost and use simple MPI_Datatype instead of mallocated complex one
 */
template <class T, class A>
template <class Set, class Map>
void
hack_array_mpi_rep<T,A>::append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const
{
    // 0) declare the local context for raw data
    scatter_message<std::vector<raw_type> > raw_from;
    scatter_message<std::vector<raw_type> > raw_to;

    // 1) convert set to vector, for direct acess & multiply by data_size
    std::vector<size_type> raw_ext_idx (base::_data_size*ext_idx_set.size());
    typename Set::const_iterator iter = ext_idx_set.begin();
    for (size_type i = 0; i < ext_idx_set.size(); i++, iter++) {
      size_type idx = *iter;
      for  (size_type l = 0; l < base::_data_size; l++) {
        size_type raw_i   = base::_data_size*i + l;
        size_type raw_idx = base::_value_size*idx + l + (base::_value_size - base::_data_size);
        raw_ext_idx [raw_i] = raw_idx;
      }
    }
    // 2) declare id[i]=i for scatter
    std::vector<size_type> raw_id (raw_ext_idx.size());
    for (size_type i = 0; i < raw_id.size(); i++) raw_id[i] = i;

    // 3) init scatter
    size_type raw_dis_size = base::_value_size*ownership().dis_size();
    size_type raw_size     = base::_value_size*ownership().size();
    distributor raw_ownership (raw_dis_size, ownership().comm(), raw_size);
    distributor::tag_type tag_init = distributor::get_new_tag();
    mpi_scatter_init(
        raw_ext_idx.size(),
        raw_ext_idx.begin().operator->(),
        raw_id.size(),
        raw_id.begin().operator->(),
        raw_ownership.dis_size(),
        raw_ownership.begin().operator->(),
        tag_init,
        raw_ownership.comm(),
        raw_from,
        raw_to);

    // 4) begin scatter: send local data to others and get ask for missing data
    std::vector<raw_type> raw_buffer (raw_ext_idx.size());
    distributor::tag_type tag = distributor::get_new_tag();
    // access to an itrator to raw_data (behaves as a pointer on raw_type)
    typedef typename base::base raw_base;
    typename raw_base::const_iterator raw_begin = raw_base::begin();
    mpi_scatter_begin (
        raw_begin,
        raw_buffer.begin().operator->(),
        raw_from,
        raw_to,
        set_op<raw_type,raw_type>(),
        tag,
        raw_ownership.comm());

    // 5) end scatter: receive missing data
    mpi_scatter_end (
        raw_begin,
        raw_buffer.begin().operator->(),
        raw_from,
        raw_to,
        set_op<raw_type,raw_type>(),
        tag,
        raw_ownership.comm());

    // 6) unpack raw data: build the associative container: pair (ext_idx ; data)
    iter = ext_idx_set.begin();
    for (size_type i = 0; i < ext_idx_set.size(); i++, iter++) {
      size_type idx = *iter;
      automatic_value_type value (base::_parameter);
      typename automatic_value_type::iterator p = value._data_begin();
      for  (size_type l = 0; l < base::_data_size; l++, p++) {
        size_type raw_i   = base::_data_size*i + l;
        *p = raw_buffer[raw_i];
      }
      ext_idx_map.insert (std::make_pair (idx, value));
    }
}
template <class T, class A>
typename hack_array_mpi_rep<T,A>::const_reference
hack_array_mpi_rep<T,A>::dis_at (const size_type dis_i) const
{
    if (ownership().is_owned(dis_i)) {
      size_type i = dis_i - ownership().first_index();
      return operator[](i);
    }
    typename scatter_map_type::const_iterator iter = _ext_x.find (dis_i);
    check_macro (iter != _ext_x.end(), "unexpected external index="<<dis_i);
    return (*iter).second;
}
template <class T, class A>
void
hack_array_mpi_rep<T,A>::update_dis_entries() const
{  
  std::set<size_type> ext_i;
  for (typename scatter_map_type::const_iterator
	iter = _ext_x.begin(),
	last = _ext_x.end(); iter != last; ++iter) {
    ext_i.insert ((*iter).first);
  }
  get_dis_entry (ext_i, _ext_x);
}
// ===============================================================
// put & get
// ===============================================================
template <class T, class A>
template <class PutFunction>
odiststream&
hack_array_mpi_rep<T,A>::put_values (odiststream& ops, PutFunction put_element) const
{
  distributor::tag_type tag = distributor::get_new_tag();
  std::ostream& os = ops.os();
  
  // determine maximum message to arrive
  size_type max_size;
  mpi::reduce(comm(), size(), max_size, mpi::maximum<size_type>(), 0);

  size_type io_proc = odiststream::io_proc();  
  if (ownership().process() == io_proc) {
    base::put_values (ops, put_element);
    // then, receive and print messages
    std::vector<raw_type> raw_values (max_size*base::_data_size, std::numeric_limits<raw_type>::max());
    for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
      if (iproc == io_proc) continue; 
      size_type loc_sz_i = ownership().size(iproc);
      if (loc_sz_i == 0) continue;
      mpi::status status = comm().recv(iproc, tag, raw_values.begin().operator->(), raw_values.size());
      boost::optional<int> n_data_opt = status.count<raw_type>();
      check_macro (n_data_opt, "receive failed");
      size_type n_data = n_data_opt.get();
      check_macro (n_data == loc_sz_i*base::_data_size, "unexpected receive message size");
      typename T::automatic_type tmp (base::_parameter);
      for (size_type i = 0; i < loc_sz_i; i++) {
	typename T::iterator p = tmp._data_begin();
        for (size_type iloc = 0; iloc < base::_data_size; iloc++, p++) {
	  *p = raw_values [i*base::_data_size + iloc];
        }
	put_element (os, tmp);
	os << std::endl;
      }
    }
    os << std::flush;
  } else {
    if (size() != 0) {
      std::vector<raw_type> raw_values (size()*base::_data_size, std::numeric_limits<raw_type>::max());
      for (size_type i = 0, n = size(); i < n; i++) {
        for (size_type j = 0; j < base::_data_size; j++) {
	  raw_values [i*base::_data_size + j] = raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size));
        }
      }
      comm().send(io_proc, tag, raw_values.begin().operator->(), raw_values.size());
    }
  }
  return ops;
}
template <class T, class A>
odiststream&
hack_array_mpi_rep<T,A>::put_values (odiststream& ops) const
{
  return put_values (ops, _disarray_put_element_type<generic_value_type>());
}
template <class T, class A>
template <class GetFunction>
idiststream&
hack_array_mpi_rep<T,A>::get_values (idiststream& ips, GetFunction get_element)
{
  distributor::tag_type tag = distributor::get_new_tag();
  std::istream& is = ips.is();
  size_type my_proc = ownership().process();
  size_type io_proc = odiststream::io_proc();
  size_type size_max = 1;
  for (size_type iproc = 0; iproc < ownership().n_process(); iproc++) {
    size_max = std::max (size_max, ownership().size(iproc));
  }
  distributor io_ownership (size_max, comm(), (my_proc == io_proc) ? size_max : 0);
  hack_array_seq_rep<T,A> data_proc_j (io_ownership, base::_parameter);
  if (my_proc == io_proc) {
    // load first chunk associated to proc 0
    check_macro (load_chunk (is, begin(), end(), get_element), "read failed on input stream.");
    if (ownership().n_process() > 1) {
      // read in other chuncks and send to other processors
      // determine maximum chunck owned by other
      std::vector<raw_type> raw_values (size_max*base::_data_size, std::numeric_limits<raw_type>::max());
      typename hack_array_seq_rep<T,A>::iterator start_j = data_proc_j.begin();
      // bizarre qu'on lise ts les blocs dans la meme zone de memoire
      // et qu'on attende pas que ce soit envoye pour ecraser par le suivant ?
      for (size_type jproc = 0; jproc < ownership().n_process(); jproc++) {
        if (jproc == io_proc) continue; 
        // load first chunk associated to proc j
        size_type loc_sz_j = ownership().size(jproc);
	if (loc_sz_j == 0) continue;
        typename hack_array_seq_rep<T,A>::iterator last_j = start_j + loc_sz_j;
        check_macro (load_chunk (is, start_j, last_j, get_element), "read failed on input stream.");
        for (size_type i = 0, n = loc_sz_j; i < n; i++) {
          for (size_type j = 0; j < base::_data_size; j++) {
	    raw_values [i*base::_data_size + j] = data_proc_j.raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size));
          }
        }
  	comm().send (jproc, tag, raw_values.begin().operator->(), loc_sz_j*base::_data_size);
      }
    }
  } else {
    if (size() != 0) {
      std::vector<raw_type> raw_values (size()*base::_data_size, std::numeric_limits<raw_type>::max());
      comm().recv (io_proc, tag, raw_values.begin().operator->(), size()*base::_data_size);
      for (size_type i = 0, n = size(); i < n; i++) {
        for (size_type j = 0; j < base::_data_size; j++) {
          raw_base::operator[] (i*base::_value_size + j+(base::_value_size - base::_data_size))
	    = raw_values [i*base::_data_size + j];
        }
      }
    }
  }
  return ips;
}
template <class T, class A>
idiststream&
hack_array_mpi_rep<T,A>::get_values (idiststream& ips)
{
  return get_values (ips, _disarray_get_element_type<generic_value_type>());
}
template <class T, class A>
template <class PutFunction, class Permutation>
odiststream&
hack_array_mpi_rep<T,A>::permuted_put_values (
  odiststream&                       ops,
  const Permutation&                 perm,
  PutFunction                        put_element) const
{
  // NOTE: could be merged with disarray::permuted_put_value : same code exactly
  assert_macro (perm.size() == size(), "permutation size does not match");
  size_type io_proc = odiststream::io_proc();
  size_type my_proc = comm().rank();
  distributor io_ownership (dis_size(), comm(), (my_proc == io_proc) ? dis_size() : 0);
  hack_array_mpi_rep<T,A>  perm_x (io_ownership, base::_parameter);
  for (size_type i = 0, n = size(); i < n; i++) {
    perm_x.dis_entry (perm[i]) = operator[](i);
  }
  perm_x.dis_entry_assembly();
  perm_x.hack_array_seq_rep<T,A>::put_values (ops, put_element);
  return ops;
}
// ===============================================================
// repartition
// ===============================================================
template <class T, class A>
template <class A2>
void
hack_array_mpi_rep<T,A>::repartition (			// old_numbering for *this
        const disarray_rep<size_type,distributed,A2>&         partition,	// old_ownership
        hack_array_mpi_rep<T,A>&                new_array,	// new_ownership
        disarray_rep<size_type,distributed,A2>&    old_numbering,	// new_ownership
        disarray_rep<size_type,distributed,A2>&    new_numbering) const // old_ownership
{
  using namespace std;
  communicator comm = ownership().comm();
  size_type nproc   = comm.size();
  size_type my_proc = comm.rank();
  vector<size_type> send_local_elt_size (nproc, 0);
  typename disarray_rep<size_type,distributed,A2>::const_iterator iter_part = partition.begin();
  for (size_type ie = 0; ie < partition.size(); ie++, iter_part++) {
    send_local_elt_size [*iter_part]++;
  }
  vector<size_type> recv_local_elt_size (nproc, 0);
  all_to_all (comm, send_local_elt_size, recv_local_elt_size);
  vector<size_type> recv_local_elt_start (nproc+1);
  recv_local_elt_start [0] = 0;
  for (size_type iproc = 0; iproc < nproc; iproc++) {
    recv_local_elt_start [iproc+1] = recv_local_elt_start [iproc] + recv_local_elt_size[iproc];
  }
  vector<size_type> send_local_elt_start (nproc);
  all_to_all (comm, recv_local_elt_start.begin().operator->(), send_local_elt_start.begin().operator->());
  size_type new_local_n_elt = recv_local_elt_start [nproc];
  size_type global_n_elt = dis_size();

  // re-distribute data:
  distributor new_elt_ownership (global_n_elt, comm, new_local_n_elt);
  new_array.resize     (new_elt_ownership, base::_parameter); // CHANGE FROM ARRAY here
  old_numbering.resize (new_elt_ownership, numeric_limits<size_type>::max());
  new_numbering.resize (ownership(), numeric_limits<size_type>::max());
  iter_part = partition.begin();
  const_iterator iter_elt = begin();
  typename disarray_rep<size_type,distributed,A2>::iterator iter_new_num_elt = new_numbering.begin();
  for (size_type ie = 0, ne = partition.size(); ie < ne; ie++, iter_part++, iter_elt++, iter_new_num_elt++) {
    size_type iproc      = *iter_part;
    const generic_value_type& x = *iter_elt; // CHANGE FROM ARRAY here
    size_type new_global_ie = new_elt_ownership[iproc] + send_local_elt_start[iproc];
    new_array.dis_entry (new_global_ie) = x;
    *iter_new_num_elt = new_global_ie;
    size_type old_global_ie = ownership()[my_proc] + ie;
    old_numbering.dis_entry (new_global_ie) = old_global_ie;
    send_local_elt_start[iproc]++;
  }
  new_array.dis_entry_assembly();
  old_numbering.template dis_entry_assembly<typename default_set_op<size_type>::type>();
}

} // namespace rheolef
#endif // _RHEOLEF_HAVE_MPI