/usr/include/rheolef/integrate.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | #ifndef _RHEO_INTEGRATE_H
#define _RHEO_INTEGRATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// SUMMARY:
// 1. numeric integration
// 1.1. general integration of a nonlinear expression
// 1.2. measure of the domain
// 1.3. when the valued result type is undetermined
// 2. field-result integration of a variational expression
// 2.1. general call
// 2.2. missing domain
// 2.3. subdomain by its name
// 3. form-result integration of a variational expression
// 3.1. general call
// 3.2. missing domain
// 3.3. subdomain by its name
// 4. variational integration: on a band
//
#include "rheolef/field_expr_v2_nonlinear.h"
#include "rheolef/field_expr_v2_variational.h"
#include "rheolef/form_expr_v2_variational.h"
#include "rheolef/field_expr_v2_value_assembly.h"
#include "rheolef/field_vf_assembly.h"
#include "rheolef/form_vf_assembly.h"
#include "rheolef/functor.h" // used to convert functions to functors
namespace rheolef {
/*Class:integrate
NAME: @code{integrate} - integrate a function or an expression
@findex integrate
DESCRIPTION:
Integrate an expression over a domain by using a quadrature formulae.
There are three main usages of the integrate function, depending upon the
type of the expression.
(i) When the expression is a numerical one, it leads to a numerical value.
(ii) When the expression involves a symbolic test-function @pxref{test class},
the result is a linear form, represented by the @code{field} class.
(iii) When the expression involves both symbolic trial- and test-functions @pxref{test class},
the result is a bilinear form, represented by the @code{field} class.
SYNOPSYS:
@example
Float integrate (geo domain);
Float integrate (geo domain, quadrature_option_type qopt);
Value integrate (geo domain, Expression, quadrature_option_type qopt);
field integrate (Expression);
field integrate (Expression, quadrature_option_type qopt);
field integrate (geo domain, Expression);
field integrate (geo domain, Expression, quadrature_option_type qopt);
form integrate (Expression);
form integrate (Expression, form_option_type qopt);
form integrate (geo domain, Expression);
form integrate (geo domain, Expression, form_option_type qopt);
@end example
EXAMPLE:
@noindent
For computing the measure of a domain:
@example
Float meas_omega = integrate (omega);
@end example
For computing the integral of a function:
@example
Float f (const point& x);
...
quadrature_option_type qopt;
qopt.set_order (3);
Float int_f = integrate (omega, f, qopt);
@end example
The last argument specifies the quadrature formulae
(see @ref{quadrature_option_type class})
used for the computation of the integral.
The function can be replaced by any field-valued expression (see @ref{field class}).
For computing a right-hand-side of a variational formulation
with the previous function @code{f}:
@example
space Xh (omega, "P1");
test v (Xh);
field lh = integrate (f*v);
@end example
For computing a bilinear form:
@example
trial u (Xh);
test v (Xh);
form m = integrate (u*v);
@end example
The expression @code{u*v} can be replaced by any bilinear expression (see @ref{field class}).
DEFAULT ARGUMENTS:
In the case of a linear or bilinear form, the domain is optional: by default it is
the full domain definition of the test function.
Also, the quadrature formulae is optional: by default, its order
is @code{2*k+1} where @code{k} is the polynomial degree of the
@code{Xh} space associated to the test function @code{v}.
When both a test @code{u} and trial @code{v} functions are suppied, let k1 and k2 be their polynomial degrees.
Then the default quadrature is choosen to be exact at least for k1+k2+1 polynoms.
When the integration is perfomed on a subdomain, this subdomain
simply replace the first argument and a domain name could also be used:
@example
field l2h = integrate (omega["boundary"], f*v);
field l3h = integrate ("boundary", f*v);
@end example
For convenience, only the domain name can be supplied.
End: */
// ---------------------------------------------------
// 1. numeric integration
// ---------------------------------------------------
// 1.1. general integration of a nonlinear expression
// ---------------------------------------------------
template <class T, class M, class Expr,
class Result = typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type::value_type>
inline
typename std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr>::value
&& ! is_undeterminated<Result>::value,
Result
>::type
integrate (const geo_basic<T,M>& omega, const Expr& expr, const quadrature_option_type& qopt,
Result dummy = Result())
{
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type wrap_t;
if (omega.map_dimension() < omega.get_background_geo().map_dimension()) {
omega.get_background_geo().neighbour_guard();
}
Result result(0);
field_expr_v2_value_assembly (omega, wrap_t(expr), qopt, result);
return result;
}
// ---------------------------------------------------
// 1.2. measure of the domain
// ---------------------------------------------------
template <class T, class M>
T
integrate (const geo_basic<T,M>& omega, quadrature_option_type&& qopt = quadrature_option_type())
{
if (qopt.get_order() == std::numeric_limits<quadrature_option_type::size_type>::max()) {
qopt.set_order(0);
}
details::f_constant <point_basic<T>,T> one(1);
return integrate (omega, one, qopt);
}
// ---------------------------------------------------
// 1.3. when the valued result type is undetermined
// ---------------------------------------------------
// TODO: return a overdetermined<T> value that is an union of all possibilities with a valued_tag
template<class T, class M, class Expr>
inline
typename std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr>::value
&& is_undeterminated<typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type::value_type>::value,
typename scalar_traits<typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type::value_type>::type
>::type
integrate (const geo_basic<T,M>& omega, const Expr& expr, const quadrature_option_type& qopt)
{
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type::value_type undef_t;
typedef typename scalar_traits<undef_t>::type scalar_type;
switch (expr.valued_tag()) {
case space_constant::scalar: {
return integrate (omega, expr, qopt, scalar_type());
}
// others type: problem on how to return a run-type type ?
// TODO: return an overdetermined union type that convert to one of scalar, point, tensor, etc ?
default:
warning_macro ("Expr="<<pretty_typename_macro(Expr));
error_macro ("integrate: not yet for `"
<< space_constant::valued_name (expr.valued_tag())
<< "' valued expression");
return 0;
}
}
// -------------------------------------------------------
// 2. field-result integration of a variational expression
// -------------------------------------------------------
// 2.1. general call
// -------------------------------------------------------
template <class T, class M, class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,field_basic<T,M>
>::type
integrate (
const geo_basic<T,M>& domain,
const Expr& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (domain, expr, qopt);
return lh;
}
// ----------------------------------------------
// 2.2. missing domain
// ----------------------------------------------
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,field_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const Expr& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic <typename Expr::scalar_type, typename Expr::memory_type> lh;
lh.assembly (expr.get_vf_space().get_geo(), expr, qopt);
return lh;
}
// ----------------------------------------------
// 2.3. subdomain by its name
// ----------------------------------------------
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,field_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const std::string& domname,
const Expr& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic <typename Expr::scalar_type, typename Expr::memory_type> lh;
lh.assembly (expr.get_vf_space().get_geo()[domname], expr, qopt);
return lh;
}
// -------------------------------------------------------
// 3. form-result integration of a variational expression
// -------------------------------------------------------
// 3.1. general call
// -------------------------------------------------------
template <class T, class M, class Expr>
inline
typename
std::enable_if<
details::is_form_expr_v2_variational_arg<Expr>::value
,form_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const geo_basic<T,M>& domain,
const Expr& expr,
const form_option_type& fopt = form_option_type())
{
form_basic<T,M> a;
a.assembly (domain, expr, fopt);
return a;
}
// ----------------------------------------------
// 3.2. missing domain
// ----------------------------------------------
template <class Expr>
inline
typename
std::enable_if<
details::is_form_expr_v2_variational_arg<Expr>::value
,form_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const Expr& expr,
const form_option_type& fopt = form_option_type())
{
form_basic <typename Expr::scalar_type, typename Expr::memory_type> a;
a.assembly (expr.get_test_space().get_geo(), expr, fopt);
return a;
}
// ----------------------------------------------
// 3.3. subdomain by its name
// ----------------------------------------------
template <class Expr>
inline
typename
std::enable_if<
details::is_form_expr_v2_variational_arg<Expr>::value
,form_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const std::string& domname,
const Expr& expr,
const form_option_type& fopt = form_option_type())
{
form_basic <typename Expr::scalar_type, typename Expr::memory_type> a;
a.assembly (expr.get_test_space().get_geo()[domname], expr, fopt);
return a;
}
// ----------------------------------------------
// 4. variational integration: on a band
// ----------------------------------------------
template <class T, class M, class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,field_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const band_basic<T,M>& gh,
const Expr& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic <typename Expr::scalar_type, typename Expr::memory_type> lh;
lh.assembly (gh, expr, qopt);
return lh;
}
template <class T, class M, class Expr>
inline
typename
std::enable_if<
details::is_form_expr_v2_variational_arg<Expr>::value
,form_basic <typename Expr::scalar_type, typename Expr::memory_type>
>::type
integrate (
const band_basic<T,M>& gh,
const Expr& expr,
const form_option_type& fopt = form_option_type())
{
form_basic <typename Expr::scalar_type, typename Expr::memory_type> a;
a.assembly (gh, expr, fopt);
return a;
}
}// namespace rheolef
#endif // _RHEO_INTEGRATE_H
|