/usr/include/rheolef/limiter.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | #ifndef _RHEOLEF_LIMITER_H
#define _RHEOLEF_LIMITER_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
// minmod_TVB limiter for hyperbolic nonlinear problems
// approximated by discontinuous Galerkin methods
//
#include "rheolef/field.h"
#include "rheolef/test.h"
/*Class:limiter
NAME: @code{limiter} - discontinuous Galerkin slope limiter
SYNOPSYS:
field limiter (const field& uh, options...);
DESCRIPTION:
@noindent
This function returns a slope limited field for any
supplied discontinuous approximation.
@example
geo omega ("square");
space Xh (omega, "P1d");
field uh (Xh);
...
field vh = limiter(uh);
@end example
This function is still in development as a prototype:
it supports only d=1 dimension and k=0 or 1 polynomial degrees.
Its generalization to 2D and 3D geometries and any polynomial
degree is in development.
AUTHOR: Pierre.Saramito@imag.fr
DATE: 3 october 2015
End:
*/
//>interpolate:
namespace rheolef {
//<verbatim:
struct limiter_option_type {
bool active;
Float theta; // > 1, see Coc-1998, P. 209
Float M; // M=max|u''(t=0)(x)| at x where u'(t)(x)=0 :extremas
limiter_option_type() : active(true), theta(1.5), M(1) {}
};
template <class T, class M>
field_basic<T,M>
limiter (
const field_basic<T,M>& uh,
const T& bar_g_S = 1.0,
const limiter_option_type& opt = limiter_option_type());
//>verbatim:
} // namespace rheolef
#endif // _RHEOLEF_LIMITER_H
|