This file is indexed.

/usr/include/rheolef/limiter.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#ifndef _RHEOLEF_LIMITER_H
#define _RHEOLEF_LIMITER_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
// minmod_TVB limiter for hyperbolic nonlinear problems
// approximated by discontinuous Galerkin methods
//
#include "rheolef/field.h"
#include "rheolef/test.h"

/*Class:limiter
NAME:  @code{limiter} - discontinuous Galerkin slope limiter
SYNOPSYS:
 field limiter (const field& uh, options...);
DESCRIPTION:       
  @noindent
  This function returns a slope limited field for any 
  supplied discontinuous approximation.
  @example
        geo omega ("square");
        space Xh (omega, "P1d");
        field uh (Xh);
        ...
        field vh = limiter(uh);
  @end example
  This function is still in development as a prototype:
  it supports only d=1 dimension and k=0 or 1 polynomial degrees.
  Its generalization to 2D and 3D geometries and any polynomial
  degree is in development.
AUTHOR: Pierre.Saramito@imag.fr
DATE:   3 october 2015
End:
*/
//>interpolate:
namespace rheolef {

//<verbatim:
struct limiter_option_type {
  bool active; 
  Float theta; // > 1, see Coc-1998, P. 209
  Float M;     // M=max|u''(t=0)(x)| at x where u'(t)(x)=0 :extremas
  limiter_option_type() : active(true), theta(1.5), M(1) {}
};
template <class T, class M>
field_basic<T,M>
limiter (
   const field_basic<T,M>& uh,
   const T&               bar_g_S = 1.0,
   const limiter_option_type& opt = limiter_option_type());
//>verbatim:

} // namespace rheolef
#endif // _RHEOLEF_LIMITER_H