This file is indexed.

/usr/include/rheolef/piola.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#ifndef _RHEOLEF_PIOLA_H
#define _RHEOLEF_PIOLA_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
// 
// piola on a predefined point set: hat_x[q], q=0..nq
//
#include "rheolef/geo.h"
#include "rheolef/basis_on_pointset.h"
namespace rheolef {

template<class T, class M>
point_basic<T>
piola_transformation (
  const geo_basic<T,M>&         omega,
  const basis_on_pointset<T>&   piola_on_pointset,
  reference_element             hat_K,
  const std::vector<size_t>&    dis_inod,
  size_t                        q);

// ------------------------------------------
// jacobian of the piola transformation
// at an aritrarily point hat_x
// ------------------------------------------
template<class T, class M>
void
jacobian_piola_transformation (
  const geo_basic<T,M>&         omega,
  const basis_on_pointset<T>&   piola_on_pointset,
  reference_element             hat_K,
  const std::vector<size_t>&    dis_inod,
  const point_basic<T>&         hat_x,
        tensor_basic<T>&        DF);

// ------------------------------------------
// jacobian of the piola transformation
// at a quadrature point
// ------------------------------------------
template<class T, class M>
void
jacobian_piola_transformation (
  const geo_basic<T,M>&         omega,
  const basis_on_pointset<T>&   piola_on_pointset,
  reference_element             hat_K,
  const std::vector<size_t>&    dis_inod,
  size_t                        q,
        tensor_basic<T>&        DF);

template <class T>
T
det_jacobian_piola_transformation (const tensor_basic<T>& DF, size_t d , size_t map_d);

// The pseudo inverse extend inv(DF) for face in 3d or edge in 2d
//  i.e. usefull for Laplacian-Beltrami and others surfacic forms.
//
// pinvDF (hat_xq) = inv DF, if tetra in 3d, tri in 2d, etc
//                  = pseudo-invese, when tri in 3d, edge in 2 or 3d
// e.g. on 3d face : pinvDF*DF = [1, 0, 0; 0, 1, 0; 0, 0, 0]
//
// let DF = [u, v, w], where u, v, w are the column vectors of DF
// then det(DF) = mixt(u,v,w)
// and det(DF)*inv(DF)^T = [v^w, w^u, u^v] where u^v = vect(u,v)
//
// application:
// if K=triangle(a,b,c) then u=ab=b-a, v=ac=c-a and w = n = u^v/|u^v|.
// Thus DF = [ab,ac,n] and det(DF)=|ab^ac|
// and inv(DF)^T = [ac^n/|ab^ac|, -ab^n/|ab^ac|, n]
// The pseudo-inverse is obtained by remplacing the last column n by zero.
//
template<class T, class M>
point_basic<T>
normal_from_piola_transformation (const geo_basic<T,M>& omega, const geo_element& S, const tensor_basic<T>& DF, size_t d);

// The pseudo inverse extend inv(DF) for face in 3d or edge in 2d
//  i.e. usefull for Laplacian-Beltrami and others surfacic forms.
//
// pinvDF (hat_xq) = inv DF, if tetra in 3d, tri in 2d, etc
//                  = pseudo-invese, when tri in 3d, edge in 2 or 3d
// e.g. on 3d face : pinvDF*DF = [1, 0, 0; 0, 1, 0; 0, 0, 0]
//
// let DF = [u, v, w], where u, v, w are the column vectors of DF
// then det(DF) = mixt(u,v,w)
// and det(DF)*inv(DF)^T = [v^w, w^u, u^v] where u^v = vect(u,v)
//
// application:
// if K=triangle(a,b,c) then u=ab=b-a, v=ac=c-a and w = n = u^v/|u^v|.
// Thus DF = [ab,ac,n] and det(DF)=|ab^ac|
// and inv(DF)^T = [ac^n/|ab^ac|, -ab^n/|ab^ac|, n]
// The pseudo-inverse is obtained by remplacing the last column n by zero.
//
template<class T>
tensor_basic<T>
pseudo_inverse_jacobian_piola_transformation (
    const tensor_basic<T>& DF,
    size_t d,
    size_t map_d);

// DF: hat_x --> DF(hat_x) on hat_K
template<class T, class M>
void
jacobian_piola_transformation (
  const geo_basic<T,M>&         omega,
  reference_element             hat_K,
  const std::vector<size_t>&    dis_inod,
  const point_basic<T>&         hat_x,
        tensor_basic<T>&        DF);

// F^{-1}: x --> hat_x  on K
template<class T, class M>
point_basic<T>
inverse_piola_transformation (
  const geo_basic<T,M>&         omega,
  const reference_element&      hat_K,
  const std::vector<size_t>&    dis_inod,
  const point_basic<T>&         x);

// compute: P = I - nxn, the tangential projector on a map with unit normal n
template <class T>
void map_projector (const tensor_basic<T>& DF, size_t d, size_t map_d, tensor_basic<T>& P);

// axisymetric weight ?
// point_basic<T> xq = rheolef::piola_transformation (_omega, _piola_table, K, dis_inod, q);
template<class T>
T
weight_coordinate_system (space_constant::coordinate_type sys_coord, const point_basic<T>& xq);

template<class T, class M>
T
weight_coordinate_system (
    const geo_basic<T,M>&         omega,
    const basis_on_pointset<T>&   piola_table,
    const geo_element&            K,
    const std::vector<size_t>&    dis_inod,
    size_t                        q);

}// namespace rheolef
#endif // _RHEOLEF_PIOLA_H