This file is indexed.

/usr/include/rheolef/pminres.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# ifndef _SKIT_PMINRES_H
# define _SKIT_PMINRES_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
#include "rheolef/diststream.h"

namespace rheolef { 
/*D:pminres
NAME: @code{pminres} -- conjugate gradient algorithm.
@findex pminres
@cindex conjugate gradient algorithm
@cindex iterative solver
@cindex preconditioner
SYNOPSIS:
  @example
    template <class Matrix, class Vector, class Preconditioner, class Real>
    int pminres (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M,
      int &max_iter, Real &tol, odiststream *p_derr=0);
  @end example
EXAMPLE:
  @noindent
  The simplest call to 'pminres' has the folling form:
  @example
    size_t max_iter = 100;
    double tol = 1e-7;
    int status = pminres(a, x, b, EYE, max_iter, tol, &derr);
  @end example
DESCRIPTION:       
  @noindent
  @code{pminres} solves the symmetric positive definite linear
  system Ax=b using the Conjugate Gradient method.

  @noindent
  The return value indicates convergence within max_iter (input)
  iterations (0), or no convergence within max_iter iterations (1).
  Upon successful return, output arguments have the following values:
  @table @code
    @item x
	approximate solution to Ax = b

    @item max_iter
	the number of iterations performed before the tolerance was reached

    @item tol
	the residual after the final iteration
  @end table
NOTE: 
  @noindent
  @code{pminres} follows the algorithm described in
  "Solution of sparse indefinite systems of linear equations", C. C. Paige
  and M. A. Saunders, SIAM J. Numer. Anal., 12(4), 1975.
  For more, see http://www.stanford.edu/group/SOL/software.html and also the
  PhD "Iterative methods for singular linear equations and least-squares problems",
  S.-C. T. Choi, Stanford University, 2006, 
  http://www.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf at page 60.
  @noindent
  The present implementation style is inspired from @code{IML++ 1.2} iterative method library,
  @url{http://math.nist.gov/iml++}.
AUTHOR: 
    Pierre Saramito
    | Pierre.Saramito@imag.fr
    LJK-IMAG, 38041 Grenoble cedex 9, France
DATE: 
    22 april 2009
METHODS: @pminres
End:
*/
//<pminres:
template <class Matrix, class Vector, class Preconditioner, class Real, class Size>
int pminres(const Matrix &A, Vector &x, const Vector &Mb, const Preconditioner &M,
  Size &max_iter, Real &tol, odiststream *p_derr = 0, std::string label = "minres")
{
  Vector b = M.solve(Mb);
  Real norm_b = sqrt(fabs(dot(Mb,b)));
  if (norm_b == Real(0.)) norm_b = 1;

  Vector Mr = Mb - A*x;
  Vector z = M.solve(Mr);
  Real beta2 = dot(Mr, z);
  Real norm_r = sqrt(fabs(beta2));
  if (p_derr) (*p_derr) << "[" << label << "] # norm_b=" <<norm_b<< std::endl;
  if (p_derr) (*p_derr) << "[" << label << "] #iteration residue/norm_b" << std::endl;
  if (p_derr) (*p_derr) << "[" << label << "] 0 " << norm_r/norm_b << std::endl;
  if (beta2 < 0 || norm_r <= tol*norm_b) {
    tol = norm_r/norm_b;
    max_iter = 0;
    dis_warning_macro ("beta2 = " << beta2 << " < 0: stop");
    return 0;
  }
  Real beta = sqrt(beta2);
  Real eta = beta;
  Vector Mv = Mr/beta;
  Vector  u =  z/beta;
  Real c_old = 1.;
  Real s_old = 0.;
  Real c = 1.;
  Real s = 0.;
  Vector u_old  (x.ownership(), 0.);
  Vector Mv_old (x.ownership(), 0.);
  Vector w      (x.ownership(), 0.);
  Vector w_old  (x.ownership(), 0.);
  Vector w_old2 (x.ownership(), 0.);
  for (Size n = 1; n <= max_iter; n++) {
    // Lanczos
    Mr = A*u;
    z = M.solve(Mr);
    Real alpha = dot(Mr, u);
    Mr = Mr - alpha*Mv - beta*Mv_old;
    z  =  z - alpha*u  - beta*u_old;
    beta2 = dot(Mr, z);
    if (beta2 < 0) { 
	dis_warning_macro ("pminres: machine precision problem");
        tol = norm_r/norm_b;
        max_iter = n;
        return 2;
    }
    Real beta_old = beta;
    beta = sqrt(beta2);
    // QR factorisation
    Real c_old2 = c_old;
    Real s_old2 = s_old;
    c_old = c;
    s_old = s;
    Real rho0 = c_old*alpha - c_old2*s_old*beta_old;
    Real rho2 = s_old*alpha + c_old2*c_old*beta_old;
    Real rho1 = sqrt(sqr(rho0) + sqr(beta));
    Real rho3 = s_old2 * beta_old;
    // Givens rotation
    c = rho0 / rho1;
    s = beta / rho1;
    // update
    w_old2 = w_old;
    w_old  = w;
    w = (u - rho2*w_old - rho3*w_old2)/rho1;
    x += c*eta*w;
    eta = -s*eta;
    Mv_old = Mv;
     u_old = u;
    Mv = Mr/beta;
     u =  z/beta;
    // check residue
    norm_r *= s;
    if (p_derr) (*p_derr) << "[" << label << "] " << n << " " << norm_r/norm_b << std::endl;
    if (norm_r <= tol*max(1.0,norm_b)) {
      tol = norm_r/norm_b;
      max_iter = n;
      return 0;
    }
  }
  tol = norm_r/norm_b;
  return 1;
}
//>pminres:
}// namespace rheolef
# endif // _SKIT_PMINRES_H