/usr/include/rheolef/tensor.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | # ifndef _RHEOLEF_TENSOR_H
# define _RHEOLEF_TENSOR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
/*Class:tensor
NAME: @code{tensor} - a N*N tensor, N=1,2,3
@cindex tensor
@clindex tensor
@clindex point
@clindex field
SYNOPSYS:
@noindent
The @code{tensor} class defines a 3*3 tensor, as the value of
a tensorial valued field. Basic algebra with scalars, vectors
of R^3 (i.e. the @code{point} class) and @code{tensor} objects
are supported.
AUTHOR: Pierre.Saramito@imag.fr
DATE: 9 october 2003
End:
*/
#include "rheolef/point.h"
namespace rheolef {
//<tensor:
template<class T>
class tensor_basic {
public:
typedef size_t size_type;
typedef T element_type;
typedef T float_type;
// allocators:
tensor_basic (const T& init_val = 0);
tensor_basic (T x[3][3]);
tensor_basic (const tensor_basic<T>& a);
static tensor_basic<T> eye (size_type d = 3);
#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
tensor_basic (const std::initializer_list<std::initializer_list<T> >& il);
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST
// affectation:
tensor_basic<T>& operator= (const tensor_basic<T>& a);
tensor_basic<T>& operator= (const T& val);
// modifiers:
void fill (const T& init_val);
void reset ();
void set_row (const point_basic<T>& r, size_t i, size_t d = 3);
void set_column (const point_basic<T>& c, size_t j, size_t d = 3);
// accessors:
T& operator()(size_type i, size_type j);
const T& operator()(size_type i, size_type j) const;
point_basic<T> row(size_type i) const;
point_basic<T> col(size_type i) const;
size_t nrow() const; // = 3, for template matrix compatibility
size_t ncol() const;
// inputs/outputs:
std::ostream& put (std::ostream& s, size_type d = 3) const;
std::istream& get (std::istream&);
// algebra:
bool operator== (const tensor_basic<T>&) const;
bool operator!= (const tensor_basic<T>& b) const { return ! operator== (b); }
const tensor_basic<T>& operator+ () const { return *this; }
tensor_basic<T> operator- () const;
tensor_basic<T> operator+ (const tensor_basic<T>& b) const;
tensor_basic<T> operator- (const tensor_basic<T>& b) const;
tensor_basic<T> operator* (const tensor_basic<T>& b) const;
tensor_basic<T> operator* (const T& k) const;
tensor_basic<T> operator/ (const T& k) const;
point_basic<T> operator* (const point_basic<T>&) const;
point_basic<T> trans_mult (const point_basic<T>& x) const;
// metric and geometric transformations:
T determinant (size_type d = 3) const;
// spectral:
// eigenvalues & eigenvectors:
// a = q*d*q^T
// a may be symmetric
// where q=(q1,q2,q3) are eigenvectors in rows (othonormal matrix)
// and d=(d1,d2,d3) are eigenvalues, sorted in decreasing order d1 >= d2 >= d3
// return d
point_basic<T> eig (tensor_basic<T>& q, size_t dim = 3) const;
point_basic<T> eig (size_t dim = 3) const;
// singular value decomposition:
// a = u*s*v^T
// a can be unsymmetric
// where u=(u1,u2,u3) are left pseudo-eigenvectors in rows (othonormal matrix)
// v=(v1,v2,v3) are right pseudo-eigenvectors in rows (othonormal matrix)
// and s=(s1,s2,s3) are eigenvalues, sorted in decreasing order s1 >= s2 >= s3
// return s
point_basic<T> svd (tensor_basic<T>& u, tensor_basic<T>& v, size_t dim = 3) const;
// data:
T _x[3][3];
};
typedef tensor_basic<Float> tensor;
// algebra (cont.)
template <class U>
point_basic<U> operator* (const point_basic<U>& yt, const tensor_basic<U>& a);
template <class U>
tensor_basic<U> trans (const tensor_basic<U>& a, size_t d = 3);
template <class U>
void prod (const tensor_basic<U>& a, const tensor_basic<U>& b, tensor_basic<U>& result,
size_t di=3, size_t dj=3, size_t dk=3);
// tr(a) = a00 + a11 + a22
template <class U>
U tr (const tensor_basic<U>& a, size_t d=3);
template <class U>
U ddot (const tensor_basic<U>&, const tensor_basic<U>&);
// a = u otimes v <==> aij = ui*vj
template <class U>
tensor_basic<U> otimes (const point_basic<U>& u, const point_basic<U>& v, size_t d=3);
template <class U>
tensor_basic<U> inv (const tensor_basic<U>& a, size_t d = 3);
template <class U>
tensor_basic<U> diag (const point_basic<U>& d);
template <class U>
point_basic<U> diag (const tensor_basic<U>& a);
template <class U>
U determinant (const tensor_basic<U>& A, size_t d = 3);
template <class U>
bool invert_3x3 (const tensor_basic<U>& A, tensor_basic<U>& result);
// nonlinear algebra:
template<class T>
tensor_basic<T> exp (const tensor_basic<T>& a, size_t d = 3);
// inputs/outputs:
template<class T>
inline
std::istream& operator>> (std::istream& in, tensor_basic<T>& a)
{
return a.get (in);
}
template<class T>
inline
std::ostream& operator<< (std::ostream& out, const tensor_basic<T>& a)
{
return a.put (out);
}
// t += a otimes b
template<class T>
void cumul_otimes (tensor_basic<T>& t, const point_basic<T>& a, const point_basic<T>& b, size_t na = 3);
template<class T>
void cumul_otimes (tensor_basic<T>& t, const point_basic<T>& a, const point_basic<T>& b, size_t na, size_t nb);
//>tensor:
// -----------------------------------------------------------------------
// inlined
// -----------------------------------------------------------------------
template<class T> struct float_traits<tensor_basic<T> > { typedef typename float_traits<T>::type type; };
template<class T> struct scalar_traits<tensor_basic<T> > { typedef T type; };
template<class T>
inline
void
tensor_basic<T>::fill (const T& init_val)
{
for (size_type i = 0; i < 3; i++) for (size_type j = 0; j < 3; j++)
_x[i][j] = init_val;
}
template<class T>
inline
void
tensor_basic<T>::reset ()
{
fill (0);
}
template<class T>
inline
tensor_basic<T>::tensor_basic (const T& init_val)
{
fill (init_val);
}
template<class T>
inline
tensor_basic<T>::tensor_basic (T x[3][3])
{
for (size_type i = 0; i < 3; i++) for (size_type j = 0; j < 3; j++)
_x[i][j] = x[i][j];
}
template<class T>
inline
tensor_basic<T>::tensor_basic (const tensor_basic<T>& a)
{
for (size_type i = 0; i < 3; i++) for (size_type j = 0; j < 3; j++)
_x[i][j] = a._x[i][j];
}
#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
template<class T>
tensor_basic<T>::tensor_basic (const std::initializer_list<std::initializer_list<T> >& il) : _x() {
#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_ITERATOR
typedef typename std::initializer_list<std::initializer_list<T> >::const_iterator const_iterator;
typedef typename std::initializer_list<T>::const_iterator const_iterator_row;
#else // _RHEOLEF_HAVE_STD_INITIALIZER_ITERATOR
typedef const std::initializer_list<T>* const_iterator;
typedef const T* const_iterator_row;
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_ITERATOR
fill (T());
check_macro (il.size() <= 3, "unexpected initializer list size=" << il.size() << " > 3");
size_type i = 0;
for (const_iterator iter = il.begin(); iter != il.end(); ++iter, ++i) {
const std::initializer_list<T>& row = *iter;
check_macro (row.size() <= 3, "unexpected initializer list size=" << row.size() << " > 3");
size_type j = 0;
for (const_iterator_row jter = row.begin(); jter != row.end(); ++jter, ++j) {
_x[i][j] = *jter;
}
}
}
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST
template<class T>
inline
tensor_basic<T>&
tensor_basic<T>::operator= (const tensor_basic<T>& a)
{
for (size_type i = 0; i < 3; i++) for (size_type j = 0; j < 3; j++)
_x[i][j] = a._x[i][j];
return *this;
}
template<class T>
inline
tensor_basic<T>&
tensor_basic<T>::operator= (const T& val)
{
for (size_type i = 0; i < 3; i++) for (size_type j = 0; j < 3; j++)
_x[i][j] = val;
return *this;
}
template<class T>
inline
size_t
tensor_basic<T>::nrow() const
{
return 3;
}
template<class T>
inline
size_t
tensor_basic<T>::ncol() const
{
return 3;
}
template<class T>
inline
T&
tensor_basic<T>::operator()(size_type i, size_type j)
{
return _x[i%3][j%3];
}
template<class T>
inline
const T&
tensor_basic<T>::operator()(size_type i, size_type j) const
{
return _x[i%3][j%3];
}
template <class T, class U>
inline
typename
std::enable_if<
details::is_rheolef_arithmetic<U>::value
,tensor_basic<T>
>::type
operator* (const U& k, const tensor_basic<T>& a)
{
return a*k;
}
template<class T>
inline
tensor_basic<T>
tensor_basic<T>::operator/ (const T& k) const
{
return operator* (1./k);
}
template<class T>
inline
point_basic<T>
tensor_basic<T>::trans_mult (const point_basic<T>& x) const
{
return x*(*this);
}
template<class T>
inline
void
cumul_otimes (tensor_basic<T>& t, const point_basic<T>& a, const point_basic<T>& b, size_t n)
{
cumul_otimes (t, a, b, n, n);
}
template<class T>
inline
tensor_basic<T>
otimes (const point_basic<T>& u, const point_basic<T>& v, size_t d)
{
tensor_basic<T> a;
cumul_otimes (a, u, v, d, d);
return a;
}
template<class T>
inline
T
determinant (const tensor_basic<T>& A, size_t d)
{
return A.determinant (d);
}
template<class T>
inline
tensor_basic<T>
diag (const point_basic<T>& d)
{
tensor_basic<T> a;
a(0,0) = d[0];
a(1,1) = d[1];
a(2,2) = d[2];
return a;
}
template<class T>
inline
point_basic<T>
diag (const tensor_basic<T>& a)
{
point_basic<T> d;
d[0] = a(0,0);
d[1] = a(1,1);
d[2] = a(2,2);
return d;
}
template <class T>
inline
T
tr (const tensor_basic<T>& a, size_t d) {
T sum = 0;
for (size_t i = 0; i < d; i++) sum += a(i,i);
return sum;
}
template<class T>
inline
void
tensor_basic<T>::set_column (const point_basic<T>& c, size_t j, size_t d)
{
for (size_t i = 0; i < d; i++)
operator()(i,j) = c[i];
}
template<class T>
inline
void
tensor_basic<T>::set_row (const point_basic<T>& r, size_t i, size_t d)
{
for (size_t j = 0; j < d; j++)
operator()(i,j) = r[j];
}
template<class T>
inline
tensor_basic<T>
tensor_basic<T>::eye (size_type d)
{
tensor_basic<T> I;
for (size_t i = 0; i < d; i++)
I(i,i) = 1;
return I;
}
template <class T>
inline
T
norm2 (const tensor_basic<T>& a)
{
return ddot(a,a);
}
template <class T>
inline
T
dist2 (const tensor_basic<T>& a, const tensor_basic<T>& b)
{
return norm2(a-b);
}
template <class U>
inline
U
norm (const tensor_basic<U>& a)
{
return sqrt(norm2(a));
}
template <class U>
inline
U
dist (const tensor_basic<U>& a, const tensor_basic<U>& b)
{
return norm(a-b);
}
}// namespace rheolef
# endif /* _RHEOLEF_TENSOR_H */
|