/usr/include/rheolef/vec_expr_v2.h is in librheolef-dev 6.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | #ifndef _RHEOLEF_VEC_EXPR_v2_H
#define _RHEOLEF_VEC_EXPR_v2_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
// vec-valued affine expressions:
//
// vec w = 2*u - v + 1:
//
// author: Pierre.Saramito@imag.fr
//
// date: 14 september 2015
//
// Notes; implementation uses template expressions and SFINAE techiques
// * template expressions allows to eliminate temporaries
// * SFINAE reduces the code size
//
// OVERVIEW:
// 1. linear/affine algebra operators
// 1.1. vec_expr, a type concept for expression types
// 1.2. unary operations
// 1.3. binary operations
// 2. completing the interface of the vec<T,M> class
// 2.1. cstor & assignment
// 2.2. computed assignment
// 2.3. scalar product
//
#include "rheolef/vec.h"
#include "rheolef/dis_inner_product.h"
#include "rheolef/dis_accumulate.h"
#include "rheolef/expr_utilities.h"
namespace rheolef {
// ===================================================================
// 1. linear/affine algebra operators
// ===================================================================
// -------------------------------------------------------------------
// 1.1. vec_expr, a type concept for expression types
// -------------------------------------------------------------------
namespace details {
// Define a trait type for detecting vec expression valid arguments
template<class T> struct is_vec : std::false_type {};
template<class T, class M> struct is_vec<vec<T, M> > : std::true_type {};
// Define a trait type for detecting vec expression valid arguments
template<class T> struct is_vec_expr_v2_arg : std::false_type {};
template<class T, class M> struct is_vec_expr_v2_arg <vec<T, M> > : std::true_type {};
} // namespace details
// -------------------------------------------
// 1.2. unary operations
// -------------------------------------------
namespace details {
template <class Op, class Expr>
struct vec_expr_v2_unary {
// typedefs:
typedef typename Expr::size_type size_type;
typedef typename Expr::value_type value_type;
typedef typename Expr::memory_type memory_type;
typedef typename Expr::const_iterator expr_const_iterator;
typedef typename float_traits <value_type>::type float_type;
// allocatos:
vec_expr_v2_unary (const Op& op, const Expr& expr)
: _op(op), _expr_iter(expr.begin()), _ownership(expr.ownership()) {}
template <class BinaryOp, class Constant>
vec_expr_v2_unary (const BinaryOp& binop, const Constant& c, const Expr& expr)
: _op(binop,c), _expr_iter(expr.begin()), _ownership(expr.ownership()) {}
template <class BinaryOp, class Constant>
vec_expr_v2_unary (const BinaryOp& binop, const Expr& expr, const Constant& c)
: _op(binop,c), _expr_iter(expr.begin()), _ownership(expr.ownership()) {}
// accessors:
const distributor& ownership() const { return _ownership; }
size_type size() const { return _ownership.size(); }
// minimal forward iterator interface:
struct const_iterator {
typedef std::forward_iterator_tag iterator_category;
typedef typename Expr::value_type value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef std::ptrdiff_t difference_type;
const_iterator (Op op, expr_const_iterator expr_iter)
: _op(op), _expr_iter (expr_iter) {}
const_iterator& operator++ () { ++_expr_iter; return *this; }
value_type operator* () const { return _op (*_expr_iter); }
protected:
const Op _op;
expr_const_iterator _expr_iter;
};
const_iterator begin() const { return const_iterator (_op, _expr_iter); }
protected:
const Op _op;
const expr_const_iterator _expr_iter;
const distributor _ownership;
};
template<class Op, class Expr> struct is_vec_expr_v2_arg <vec_expr_v2_unary<Op,Expr> > : std::true_type {};
} // namespace details
#define _RHEOLEF_vec_expr_v2_unary_operator(OP, FUNCTOR) \
template <class Expr> \
inline \
typename \
std::enable_if< \
details::is_vec_expr_v2_arg<Expr>::value, \
details::vec_expr_v2_unary< \
FUNCTOR, \
Expr \
> \
>::type \
operator OP (const Expr& expr) \
{ \
typedef details::vec_expr_v2_unary <FUNCTOR, Expr> expr_t; \
return expr_t (FUNCTOR(), expr); \
}
_RHEOLEF_vec_expr_v2_unary_operator(+, details::generic_unary_plus<>)
_RHEOLEF_vec_expr_v2_unary_operator(-, details::generic_negate<>)
#undef _RHEOLEF_vec_expr_v2_unary_operator
// -------------------------------------------
// 1.3. binary operations
// -------------------------------------------
namespace details {
template <class Op, class Expr1, class Expr2>
struct vec_expr_v2_binary {
typedef typename Expr1::size_type size_type;
typedef typename promote<
typename Expr1::value_type,
typename Expr2::value_type>::type value_type;
typedef typename Expr1::memory_type memory_type; // TODO: check Expr2::memory_type
typedef typename Expr1::const_iterator expr1_const_iterator;
typedef typename Expr2::const_iterator expr2_const_iterator;
typedef typename float_traits <value_type>::type float_type;
// allocators:
vec_expr_v2_binary (const Op& op, const Expr1& expr1, const Expr2& expr2)
: _op (op),
_iter1 (expr1.begin()),
_iter2 (expr2.begin()),
_ownership (expr1.ownership())
{
check_macro (expr1.size() == expr2.size(), "linear binary vec expression: incompatible sizes "
<< expr1.size() << " and " << expr2.size());
}
// accessors:
const distributor& ownership() const { return _ownership; }
size_type size() const { return _ownership.size(); }
// minimal forward iterator interface:
struct const_iterator {
typedef std::forward_iterator_tag iterator_category;
typedef typename promote<
typename Expr1::value_type,
typename Expr2::value_type>::type value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef std::ptrdiff_t difference_type;
const_iterator (Op op, expr1_const_iterator iter1, expr2_const_iterator iter2)
: _op(op), _iter1 (iter1), _iter2 (iter2) {}
const_iterator& operator++ () { ++_iter1; ++_iter2; return *this; }
value_type operator* () const { return _op (*_iter1, *_iter2); }
protected:
const Op _op;
expr1_const_iterator _iter1;
expr2_const_iterator _iter2;
};
const_iterator begin() const { return const_iterator (_op, _iter1, _iter2); }
protected:
const Op _op;
expr1_const_iterator _iter1;
expr2_const_iterator _iter2;
const distributor _ownership;
};
template<class Op, class Expr1, class Expr2> struct is_vec_expr_v2_arg <vec_expr_v2_binary<Op,Expr1,Expr2> > : std::true_type {};
template <class Op, class Expr1, class Expr2, class Sfinae = void>
struct vec_expr_v2_binary_traits { /* catch-all case */ };
// vec_expr +- vec_expr
template <class Op, class Expr1, class Expr2>
struct vec_expr_v2_binary_traits <Op, Expr1, Expr2,
typename std::enable_if<
details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_vec_expr_v2_arg<Expr2>::value>::type>
{
typedef vec_expr_v2_binary <Op,Expr1,Expr2> type;
};
// constant +-* vec_expr
template <class Op, class Expr1, class Expr2>
struct vec_expr_v2_binary_traits <Op, Expr1, Expr2,
typename std::enable_if<
details::is_rheolef_arithmetic<Expr1>::value &&
details::is_vec_expr_v2_arg<Expr2>::value>::type>
{
typedef generic_binder1st <Op, Expr1> fun_t;
typedef vec_expr_v2_unary <fun_t,Expr2> type;
};
// vec_expr +-* constant
template <class Op, class Expr1, class Expr2>
struct vec_expr_v2_binary_traits <Op, Expr1, Expr2,
typename std::enable_if<
details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_rheolef_arithmetic<Expr2>::value>::type>
{
typedef generic_binder2nd <Op, Expr2> fun_t;
typedef vec_expr_v2_unary <fun_t,Expr1> type;
};
} // namespace details
// x+y; x+c ; c+x
#define _RHEOLEF_vec_expr_v2_binary_operator(OP, FUNCTOR) \
template <class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
(details::is_vec_expr_v2_arg<Expr1>::value && \
details::is_vec_expr_v2_arg<Expr2>::value) || \
(details::is_rheolef_arithmetic<Expr1>::value && \
details::is_vec_expr_v2_arg<Expr2>::value) || \
(details::is_vec_expr_v2_arg<Expr1>::value && \
details::is_rheolef_arithmetic<Expr2>::value), \
typename \
details::vec_expr_v2_binary_traits< \
FUNCTOR, \
Expr1, Expr2 \
>::type \
>::type \
operator OP (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::vec_expr_v2_binary_traits <FUNCTOR, Expr1, Expr2>::type expr_t; \
return expr_t (FUNCTOR(), expr1, expr2); \
}
_RHEOLEF_vec_expr_v2_binary_operator(+, details::generic_plus<>)
_RHEOLEF_vec_expr_v2_binary_operator(-, details::generic_minus<>)
#undef _RHEOLEF_vec_expr_v2_binary_operator
// c*x ; x*c
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
(details::is_rheolef_arithmetic<Expr1>::value &&
details::is_vec_expr_v2_arg<Expr2>::value) ||
(details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_rheolef_arithmetic<Expr2>::value),
typename
details::vec_expr_v2_binary_traits<
details::generic_multiplies<>,
Expr1, Expr2
>::type
>::type
operator* (const Expr1& expr1, const Expr2& expr2)
{
typedef details::generic_multiplies<> fun_t;
typedef typename details::vec_expr_v2_binary_traits <fun_t, Expr1, Expr2>::type expr_t;
return expr_t (fun_t(), expr1, expr2);
}
// x/c
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
(details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_rheolef_arithmetic<Expr2>::value),
typename
details::vec_expr_v2_binary_traits<
details::generic_divides<>,
Expr1, Expr2
>::type
>::type
operator/ (const Expr1& expr1, const Expr2& expr2)
{
typedef details::generic_divides<> fun_t;
typedef typename details::vec_expr_v2_binary_traits <fun_t, Expr1, Expr2>::type expr_t;
return expr_t (fun_t(), expr1, expr2);
}
// ===================================================================
// 2. completing the interface of the vec<T,M> class
// ===================================================================
// ---------------------------------------------------------------------------
// 2.1. cstor & assignment
// ---------------------------------------------------------------------------
// vec<double> x = expr;
template<class T, class M>
template<class Expr, class Sfinae>
inline
vec<T,M>::vec (const Expr& expr)
: disarray<T,M>()
{
operator= (expr);
}
// x = expr;
template< class T, class M>
template <class Expr, class Sfinae>
inline
vec<T, M>&
vec<T,M>::operator= (const Expr& expr)
{
if (disarray<T,M>::dis_size() == 0) {
resize (expr.ownership());
} else {
std::size_t n = disarray<T,M>::size();
check_macro (n == expr.size(),
"vec = vec_expression : incompatible size "
<< n << " and " << expr.size());
}
details::assign_with_operator (disarray<T,M>::begin(), disarray<T,M>::end(), expr.begin(), details::assign_op());
return *this;
}
// ---------------------------------------------------------------------------
// 2.2) computed assignment
// ---------------------------------------------------------------------------
// x +-= expr;
#define _RHEOLEF_vec_expr_v2_op_assign(OP, FUNCTOR) \
template<class T, class M, class Expr> \
inline \
typename std::enable_if< \
details::is_vec_expr_v2_arg<Expr>::value, \
vec<T,M>&>::type \
operator OP (vec<T,M>& x, const Expr& expr) \
{ \
check_macro (x.size() == expr.size(), "vec " << #OP << " vec_expression : incompatible spaces " \
<< x.size() << " and " << expr.size()); \
details::assign_with_operator (x.begin(), x.end(), expr.begin(), FUNCTOR()); \
return x; \
}
_RHEOLEF_vec_expr_v2_op_assign(+=, details::plus_assign)
_RHEOLEF_vec_expr_v2_op_assign(-=, details::minus_assign)
#undef _RHEOLEF_vec_expr_v2_op_assign
// x -+*/= c
#define _RHEOLEF_vec_expr_v2_op_assign_constant(OP, FUNCTOR) \
template<class T, class M, class Expr> \
inline \
typename std::enable_if< \
details::is_rheolef_arithmetic<Expr>::value, \
vec<T,M>&>::type \
operator OP (vec<T,M>& x, const Expr& expr) \
{ \
details::assign_with_operator (x.begin(), x.end(), details::iterator_on_constant<Expr>(expr), FUNCTOR()); \
return x; \
}
_RHEOLEF_vec_expr_v2_op_assign_constant(+=, details::plus_assign)
_RHEOLEF_vec_expr_v2_op_assign_constant(-=, details::minus_assign)
_RHEOLEF_vec_expr_v2_op_assign_constant(*=, details::multiplies_assign)
_RHEOLEF_vec_expr_v2_op_assign_constant(/=, details::divides_assign)
#undef _RHEOLEF_vec_expr_v2_op_assign_constant
// ---------------------------------------------------------------------------
// 2.3. scalar product
// ---------------------------------------------------------------------------
// dot (x,y)
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_vec_expr_v2_arg<Expr2>::value,
typename promote<
typename Expr1::float_type,
typename Expr2::float_type>::type
>::type
dot (const Expr1& expr1, const Expr2& expr2)
{
typedef typename Expr1::memory_type M;
return dis_inner_product (expr1.begin(), expr2.begin(), expr1.size(), expr1.ownership().comm(), M());
}
// dot (c,x)
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_rheolef_arithmetic<Expr1>::value &&
details::is_vec_expr_v2_arg<Expr2>::value,
typename Expr2::float_type
>::type
dot (const Expr1& expr1, const Expr2& expr2)
{
typedef typename Expr2::memory_type M;
return expr1*dis_accumulate (expr2.begin(), expr2.size(), expr2.ownership().comm(), M());
}
// dot (x,c)
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_vec_expr_v2_arg<Expr1>::value &&
details::is_rheolef_arithmetic<Expr2>::value,
typename Expr1::float_type
>::type
dot (const Expr1& expr1, const Expr2& expr2)
{
typedef typename Expr1::memory_type M;
return dis_accumulate (expr1.begin(), expr1.size(), expr1.ownership().comm(), M())*expr2;
}
} // namespace rheolef
#endif // _RHEOLEF_VEC_EXPR_v2_H
|