This file is indexed.

/usr/include/sdsl/bit_vector_il.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/* sdsl - succinct data structures library
    Copyright (C) 2012 Simon Gog, Matthias Petri

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*!\file bit_vector_il.hpp
   \brief bit_vector_il.hpp contains the sdsl::bit_vector_il class, and
          classes which support rank and select for bit_vector_il.
   \author Matthias Petri, Simon Gog
*/
#ifndef SDSL_BIT_VECTOR_IL
#define SDSL_BIT_VECTOR_IL

#include "int_vector.hpp"
#include "util.hpp"
#include "iterators.hpp"

#include <queue>

//! Namespace for the succinct data structure library
namespace sdsl
{

template<uint8_t t_b=1,uint32_t t_bs=512>// forward declaration needed for friend declaration
class rank_support_il;  // in bit_vector_il

template<uint8_t t_b=1,uint32_t t_bs=512>// forward declaration needed for friend declaration
class select_support_il;  // in bit_vector_il

template<class T>
constexpr bool power_of_two(T x)
{
    return std::is_integral<T>::value and x > 1 and
           !(x&(x-1));
}

//! A bit vector which interleaves the original bit_vector with rank information.
/*!
 * This class is a uncompressed bit vector representation. It copies the original
 * bit_vector and interleaves the data every t_bs bits with a cumulative
 * sum of set bits before the current position. Each cumulative sum is stored
 * in a 64 bit word.
 *
 * \tparam t_bs Block size in bits. t_bs has to be a power of 2 and t_bs >= 64.
 */
template<uint32_t t_bs=512>
class bit_vector_il
{
        static_assert(t_bs >= 64 , "bit_vector_il: blocksize must be be at least 64 bits.");
        static_assert(power_of_two(t_bs), "bit_vector_il: blocksize must be a power of two.");
    public:
        typedef bit_vector::size_type                       size_type;
        typedef size_type                                   value_type;
        typedef bit_vector::difference_type                 difference_type;
        typedef random_access_const_iterator<bit_vector_il> iterator;
        typedef bv_tag                                      index_category;

        friend class rank_support_il<1,t_bs>;
        friend class rank_support_il<0,t_bs>;
        friend class select_support_il<1,t_bs>;
        friend class select_support_il<0,t_bs>;

        typedef rank_support_il<1,t_bs>     rank_1_type;
        typedef rank_support_il<0,t_bs>     rank_0_type;
        typedef select_support_il<1,t_bs> select_1_type;
        typedef select_support_il<0,t_bs> select_0_type;
    private:
        size_type m_size        = 0;  //!< Size of the original bitvector
        size_type m_block_num   = 0;  //!< Total size of m_data in uint64_t ss
        size_type m_superblocks = 0;  //!< Number of superblocks
        size_type m_block_shift = 0;
        int_vector<64> m_data;        //!< Data container
        int_vector<64> m_rank_samples;//!< Space for additional rank samples

        // precondition: m_rank_samples.size() <= m_superblocks
        void init_rank_samples() {
            uint32_t blockSize_U64 = bits::hi(t_bs>>6);
            size_type idx = 0;
            std::queue<size_type> lbs, rbs;
            lbs.push(0); rbs.push(m_superblocks);
            while (!lbs.empty()) {
                size_type lb = lbs.front(); lbs.pop();
                size_type rb = rbs.front(); rbs.pop();
                if (/*lb < rb and*/ idx < m_rank_samples.size()) {
                    size_type mid = lb + (rb-lb)/2; // select mid \in [lb..rb)
                    size_type pos = (mid << blockSize_U64) + mid;
                    m_rank_samples[ idx++ ] = m_data[pos];
                    lbs.push(lb); rbs.push(mid);
                    lbs.push(mid+1); rbs.push(rb);
                }
            }
        }

    public:
        bit_vector_il() {}
        bit_vector_il(const  bit_vector_il&) = default;
        bit_vector_il(bit_vector_il&&) = default;
        bit_vector_il& operator=(const bit_vector_il&) = default;
        bit_vector_il& operator=(bit_vector_il&&) = default;

        bit_vector_il(const bit_vector& bv) {
            m_size = bv.size();
            /* calculate the number of superblocks */
//          each block of size > 0 gets suberblock in which we store the cumulative sum up to this block
            m_superblocks = (m_size+t_bs) / t_bs;
            m_block_shift = bits::hi(t_bs);
            /* allocate new data */
            size_type blocks = (m_size+64)/64;
            size_type mem =  blocks +         m_superblocks + 1;
//                          ^^^^^^^^^^^^^^^   ^^^^^^^^^^^^^   ^
//                          bit vector data | cum. sum data | sum after last block
            m_data = int_vector<64>(mem);
            m_block_num = mem;

            /* assign data and calculate super block values */
            const uint64_t* bvp = bv.data();

            size_type j = 0; // 64-bit word counter in the m_data
            size_type cum_sum = 0;
            size_type sample_rate = t_bs/64;
            for (size_type i=0, sample_cnt=sample_rate; i < blocks; ++i, ++sample_cnt) {
                if (sample_cnt == sample_rate) {
                    m_data[j] = cum_sum;
                    sample_cnt = 0;
                    j++;
                }
                m_data[j] = bvp[i];
                cum_sum += bits::cnt(m_data[j]);
                j++;
            }
            m_data[j] = cum_sum; /* last superblock so we can always
                                    get num_ones fast */
            if (m_block_num > 1024*64) {
                // we store at most m_superblocks+1 rank_samples:
                // we do a cache efficient binary search for the select on X=1024
                // or X=the smallest power of two smaller than m_superblock
                m_rank_samples.resize(std::min(1024ULL, 1ULL << bits::hi(m_superblocks)));
            }
            init_rank_samples();
        }

        //! Accessing the i-th element of the original bit_vector
        /*! \param i An index i with \f$ 0 \leq i < size()  \f$.
         *  \return The i-th bit of the original bit_vector
         *  \par Time complexity
         *     \f$ \Order{1} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < m_size);
            size_type bs = i >> m_block_shift;
            size_type block = bs + (i>>6) + 1;
            return ((m_data[block] >> (i&63)) & 1ULL);
        }

        //! Get the integer value of the binary string of length len starting at position idx.
        /*! \param idx Starting index of the binary representation of the integer.
         *  \param len Length of the binary representation of the integer. Default value is 64.
         *   \returns The integer value of the binary string of length len starting at position idx.
         *
         *  \pre idx+len-1 in [0..size()-1]
         *  \pre len in [1..64]
         */
        uint64_t get_int(size_type idx, uint8_t len=64)const {
            assert(idx+len-1 < m_size);
            size_type bs = idx >> m_block_shift;
            size_type b_block = bs + (idx>>6) + 1;
            bs = (idx+len-1) >> m_block_shift;
            size_type e_block = bs + ((idx+len-1)>>6) + 1;
            if (b_block == e_block) {  // spans on block
                return (m_data[b_block] >> (idx&63)) & bits::lo_set[len];
            } else { // spans two blocks
                uint8_t b_len = 64-(idx&63);
                return (m_data[b_block] >> (idx&63))
                       | (m_data[e_block] & bits::lo_set[len-b_len]) << b_len;
            }
        }

        //! Returns the size of the original bit vector.
        size_type size()const {
            return m_size;
        }

        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += write_member(m_block_num, out, child, "block_num");
            written_bytes += write_member(m_superblocks, out, child, "superblocks");
            written_bytes += write_member(m_block_shift, out, child, "block_shift");
            written_bytes += m_data.serialize(out, child, "data");
            written_bytes += m_rank_samples.serialize(out, child, "rank_samples");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            read_member(m_block_num, in);
            read_member(m_superblocks, in);
            read_member(m_block_shift, in);
            m_data.load(in);
            m_rank_samples.load(in);
        }

        void swap(bit_vector_il& bv) {
            if (this != &bv) {
                std::swap(m_size, bv.m_size);
                std::swap(m_block_num, bv.m_block_num);
                std::swap(m_superblocks, bv.m_superblocks);
                std::swap(m_block_shift, bv.m_block_shift);
                m_data.swap(bv.m_data);
                m_rank_samples.swap(bv.m_rank_samples);
            }
        }

        iterator begin() const {
            return iterator(this, 0);
        }

        iterator end() const {
            return iterator(this, size());
        }
};

template<uint8_t t_b, uint32_t t_bs>
class rank_support_il
{
        static_assert(t_b == 1 or t_b == 0 , "rank_support_il only supports bitpatterns 0 or 1.");
    public:
        typedef bit_vector::size_type size_type;
        typedef bit_vector_il<t_bs>   bit_vector_type;
        enum { bit_pat = t_b };
    private:
        const bit_vector_type* m_v;
        size_type m_block_shift;
        size_type m_block_mask;
        size_type m_block_size_U64;  //! Size of superblocks in 64-bit words

        inline size_type rank1(size_type i) const {
            size_type SBlockNum = i >> m_block_shift;
            size_type SBlockPos = (SBlockNum << m_block_size_U64) + SBlockNum;
            uint64_t resp = m_v->m_data[SBlockPos];
            const uint64_t* B = (m_v->m_data.data() + (SBlockPos+1));
            uint64_t rem = i&63;
            uint64_t bits = (i&m_block_mask) - rem;
            while (bits) {
                resp += bits::cnt(*B++);
                bits -= 64;
            }
            resp += bits::cnt(*B & bits::lo_set[rem]);
            return resp;
        }


        inline size_type rank0(size_type i) const {
            size_type SBlockNum = i >> m_block_shift;
            size_type SBlockPos = (SBlockNum << m_block_size_U64) + SBlockNum;
            uint64_t resp = (SBlockNum << m_block_shift) - m_v->m_data[SBlockPos];
            const uint64_t* B = (m_v->m_data.data() + (SBlockPos+1));
            uint64_t rem = i&63;
            uint64_t bits = (i&m_block_mask) - rem;
            while (bits) {
                resp += bits::cnt(~(*B)); B++;
                bits -= 64;
            }
            resp += bits::cnt((~(*B)) & bits::lo_set[rem]);
            return resp;
        }

    public:

        rank_support_il(const bit_vector_type* v=nullptr) {
            set_vector(v);
            m_block_shift = bits::hi(t_bs);
            m_block_mask = t_bs - 1;
            m_block_size_U64 = bits::hi(t_bs>>6);
        }

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type rank(size_type i) const {
            if (t_b) return rank1(i);
            return rank0(i);
        }

        size_type operator()(size_type i)const {
            return rank(i);
        }

        size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        rank_support_il& operator=(const rank_support_il& rs) {
            if (this != &rs) {
                set_vector(rs.m_v);
            }
            return *this;
        }

        void swap(rank_support_il&) { }

        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            return serialize_empty_object(out, v, name, this);
        }
};


template<uint8_t t_b, uint32_t t_bs>
class select_support_il
{
        static_assert(t_b == 1 or t_b == 0 , "select_support_il only supports bitpatterns 0 or 1.");
    public:
        typedef bit_vector::size_type size_type;
        typedef bit_vector_il<t_bs>   bit_vector_type;
        enum { bit_pat = t_b };
    private:
        const bit_vector_type* m_v;
        size_type m_superblocks;
        size_type m_block_shift;
        size_type m_block_size_U64;

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type select1(size_type i) const {
            size_type lb = 0, rb = m_v->m_superblocks; // search interval [lb..rb)
            size_type res = 0;
            size_type idx = 0; // index in m_rank_samples
            /* binary search over super blocks */
            // invariant: lb==0 or m_data[ pos(lb-1) ] < i
            //            m_data[ pos(rb) ] >= i, initial since i < rank(size())
            while (lb < rb) {
                size_type mid = (lb+rb)/2; // select mid \in [lb..rb)
#ifndef NOSELCACHE
                if (idx < m_v->m_rank_samples.size()) {
                    if (m_v->m_rank_samples[idx] >= i) {
                        idx = (idx<<1) + 1;
                        rb = mid;
                    } else {
                        idx = (idx<<1) + 2;
                        lb = mid + 1;
                    }
                } else {
#endif
                    size_type pos = (mid << m_block_size_U64) + mid;
//                                  ^^^^^^^^^^^^^^^^^^^^^^     ^^^^^^^^^^^^^^^^^^^
//                                    data blocks to jump      superblock position
                    if (m_v->m_data[pos] >= i) {
                        rb = mid;
                    } else {
                        lb = mid + 1;
                    }
#ifndef NOSELCACHE
                }
#endif
            }
            res = (rb-1) << m_block_shift;
            /* iterate in 64 bit steps */
            const uint64_t* w = m_v->m_data.data() + ((rb-1) << m_block_size_U64) + (rb-1);
            i -= *w;  // subtract the cumulative sum before the superblock
            ++w; /* step into the data */
            size_type ones = bits::cnt(*w);
            while (ones < i) {
                i -= ones; ++w;
                ones = bits::cnt(*w);
                res += 64;
            }
            /* handle last word */
            res += bits::sel(*w, i);
            return res;
        }

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type select0(size_type i)const {
            size_type lb = 0, rb = m_v->m_superblocks; // search interval [lb..rb)
            size_type res = 0;
            size_type idx = 0; // index in m_rank_samples
            /* binary search over super blocks */
            // invariant: lb==0 or m_data[ pos(lb-1) ] < i
            //            m_data[ pos(rb) ] >= i, initial since i < rank(size())
            while (lb < rb) {
                size_type mid = (lb+rb)/2; // select mid \in [lb..rb)
#ifndef NOSELCACHE
                if (idx < m_v->m_rank_samples.size()) {
                    if (((mid << m_block_shift) - m_v->m_rank_samples[idx]) >= i) {
                        idx = (idx<<1) + 1;
                        rb = mid;
                    } else {
                        idx = (idx<<1) + 2;
                        lb = mid + 1;
                    }
                } else {
#endif
                    size_type pos = (mid << m_block_size_U64) + mid;
//                                  ^^^^^^^^^^^^^^^^^^^^^^     ^^^^^^^^^^^^^^^^^^^
//                                    data blocks to jump      superblock position
                    if (((mid << m_block_shift) - m_v->m_data[pos]) >= i) {
                        rb = mid;
                    } else {
                        lb = mid + 1;
                    }
#ifndef NOSELCACHE
                }
#endif
            }
            res = (rb-1) << m_block_shift;

            /* iterate in 64 bit steps */
            const uint64_t* w = m_v->m_data.data() + ((rb-1) << m_block_size_U64) + (rb-1);
            i = i - (res - *w);  // substract the cumulative sum before the superblock
            ++w; /* step into the data */
            size_type zeros = bits::cnt(~ *w);
            while (zeros < i) {
                i -= zeros; ++w;
                zeros = bits::cnt(~ *w);
                res += 64;
            }
            /* handle last word */
            res += bits::sel(~ *w, i);
            return res;
        }

    public:

        select_support_il(const bit_vector_type* v=nullptr) {
            set_vector(v);
            m_block_shift = bits::hi(t_bs);
            m_block_size_U64 = bits::hi(t_bs>>6);

        }

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type select(size_type i) const {
            if (t_b) return select1(i);
            return select0(i);
        }

        size_type operator()(size_type i)const {
            return select(i);
        }

        size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        select_support_il& operator=(const select_support_il& rs) {
            if (this != &rs) {
                set_vector(rs.m_v);
            }
            return *this;
        }

        void swap(select_support_il&) { }

        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            return serialize_empty_object(out, v, name, this);
        }
};

} // end namespace sdsl
#endif