This file is indexed.

/usr/include/sdsl/bp_support_algorithm.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/* sdsl - succinct data structures library
    Copyright (C) 2009-2013 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file bp_support_algorithm.hpp
    \brief bp_support_algorithm.hpp contains algorithms for balanced parentheses sequences.
	\author Simon Gog
*/
#ifndef INCLUDED_SDSL_BP_SUPPORT_ALGORITHM
#define INCLUDED_SDSL_BP_SUPPORT_ALGORITHM

#include "int_vector.hpp" // for bit_vector
#include <stack> // for calculate_pioneers_bitmap method
#include <map>   // for calculate_pioneers_bitmap method
#include "sorted_stack_support.hpp"


namespace sdsl
{

// This structure contains lookup tables
struct excess {
    static struct impl {
        // Given an excess value x in [-8,8] and a 8-bit
        // word w interpreted as parentheses sequence.
        // near_fwd_pos[(x+8)<<8 | w] contains the minimal position
        // p in [0..7] where the excess value x is reached, or 8
        // if x is not reached in w.
        uint8_t near_fwd_pos[(8-(-8))*256];

        // Given an excess value of x in [-8,8] and a 8-bit
        // word w interpreted as parentheses sequence.
        // near_bwd_pos[(x+8)<<8 | w] contains the maximal position
        // p in [0..7] where the excess value x is reached, or 8
        // if x is not reached in w.
        uint8_t near_bwd_pos[(8-(-8))*256];

        // Given a 8-bit word w. word_sum[w] contains the
        // excess value of w.
        int8_t word_sum[256];

        // Given a 8-bit word w. min[w] contains the
        // minimal excess value in w.
        int8_t min[256];

        // Given a 8-bit word w. min_pos_max[w] contains
        // the maximal position p in w, where min[w] is
        // reached
        int8_t min_pos_max[256];

        // Given an excess value x in [1,8] and a 8-bit
        // word w interpreted as parentheses sequence.
        // min_match_pos_packed[w]:[(x-1)*4,x*4] contains
        // the minimal position, where excess value
        // -x is reached and 9, if there is no such position.
        uint32_t min_match_pos_packed[256];

        // Given an excess value x in [1,8] and a 8-bit
        // word w interpreted as parentheses sequence.
        // max_match_pos_packed[w]:[(x-1)*4,x*4] contains
        // the maximal position, where excess value
        // -x is reached and 9, if there is no such position.
        uint32_t max_match_pos_packed[256];

        // Given a 8-bit word w. x=min_and_info[w] contains
        // the following information.
        // * [0..7] the minimum excess value in w + 8 of an opening parenthesis
        // * [8..11] the maximal position of the minimal excess value
        // * [12..15] the number of ones in the word
        // if w != 0, and 17 for w=0.
        uint16_t min_open_excess_info[256];

        impl() {
            for (int32_t x = -8; x < 8; ++x) {
                for (uint16_t w=0; w < 256; ++w) {
                    uint16_t i = (x+8)<<8|w;
                    near_fwd_pos[i] = 8;
                    int8_t p=0;
                    int8_t excess = 0;
                    do {
                        excess += 1-2*((w&(1<<p))==0);
                        if (excess == x) {
                            near_fwd_pos[i] = p;
                            break;
                        }
                        ++p;
                    } while (p < 8);

                    near_bwd_pos[i] = 8;
                    p = 7;
                    excess = 0;
                    do {
                        excess += 1-2*((w&(1<<p))>0);
                        if (excess == x) {
                            near_bwd_pos[i] = p;
                            break;
                        }
                        --p;
                    } while (p > -1);
                }
            }
            int_vector<> packed_mins(1, 0, 32);
            int_vector<> packed_maxs(1, 0, 32);
            for (uint16_t w=0; w < 256; ++w) {
                int8_t excess = 0;
                int8_t rev_excess = 0;
                int32_t min_excess_of_open = 17;
                int32_t min_excess_of_open_pos = 0;
                uint32_t ones = 0;
                min[w] = 8;
                packed_mins[0] = 0x99999999U;
                packed_maxs[0] = 0x99999999U;
                packed_mins.width(4);
                packed_maxs.width(4);
                for (uint16_t p=0; p<8; ++p) {
                    ones += (w&(1<<p))!=0;
                    excess += 1-2*((w&(1<<p))==0);
                    if (excess <= min[w]) {
                        min[w] = excess;
                        min_pos_max[w] = p;
                    }
                    if (excess < 0 and packed_mins[-excess-1] == 9) {
                        packed_mins[-excess-1] = p;
                    }
                    if (w&(1<<p) and excess+8 <= min_excess_of_open) {
                        min_excess_of_open     = excess+8;
                        min_excess_of_open_pos = p;
                    }
                    rev_excess += 1-2*((w&(1<<(7-p)))>0);
                    if (rev_excess < 0 and packed_maxs[-rev_excess-1] == 9) {
                        packed_maxs[-rev_excess-1] = 7-p;
                    }
                }
                word_sum[w] = excess;
                packed_mins.width(32);
                min_match_pos_packed[w] = packed_mins[0];
                packed_maxs.width(32);
                max_match_pos_packed[w] = packed_maxs[0];
                min_open_excess_info[w] = (min_excess_of_open) |
                                          (min_excess_of_open_pos << 8) |
                                          (ones << 12);
            }
        }
    } data;
};

//! Calculate pioneers as defined in the paper of Geary et al. (CPM 2004)
/*! \param bp             The balanced parentheses sequence.
 *  \param block_size     Block size.
 *  \return Bitvector which marks the pioneers in bp.
 *  \par Time complexity
 *       \f$ \Order{n \log n} \f$, where \f$ n=\f$bp.size()
 *  \par Space complexity
 *       \f$ \Order{2n + min(block\_size, \frac{n}{block\_size} )\cdot \log n } \f$
 */
bit_vector
calculate_pioneers_bitmap(const bit_vector& bp, uint64_t block_size);

//! Space-efficient version of calculate_pioneers_bitmap
/*! \param bp           The balanced parentheses sequence.
 *  \param block_size   Block size.
 *  \return Bitvector which marks the pioneers in bp.
 *  \par Time complexity
 *       \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
 *  \par Space complexity
 *       \f$ \Order{2n + n} \f$ bits: \f$n\f$ bits for input, \f$n\f$ bits for
 *       output, and \f$n\f$ bits for a succinct stack.
 *  \pre The parentheses sequence represented by bp has to be balanced.
 */
bit_vector
calculate_pioneers_bitmap_succinct(const bit_vector& bp, uint64_t block_size);

//! find_open/find_close for closing/opening parentheses.
/*! \param bp      The balanced parentheses sequence.
 *  \param matches Reference to the result.
 *  \pre bp represents a balanced parentheses sequence.
 *  \par Time complexity
 *       \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
 *  \par Space complexity
 *       \f$ \Order{n + 2n\log n } \f$
 */
template<class int_vector>
void calculate_matches(const bit_vector& bp, int_vector& matches)
{
    matches = int_vector(bp.size(), 0, bits::hi(bp.size())+1);
    std::stack<uint64_t> opening_parenthesis;
    for (uint64_t i=0; i < bp.size(); ++i) {
        if (bp[i]) {// opening parenthesis
            opening_parenthesis.push(i);
        } else { // closing parenthesis
            assert(!opening_parenthesis.empty());
            uint64_t position = opening_parenthesis.top();
            opening_parenthesis.pop();
            matches[i] = position;
            assert(matches[i]==position);
            matches[position] = i;
            assert(matches[position]==i);
        }
    }
    // assert that the sequence is balanced
    assert(opening_parenthesis.empty());
}

//! Calculates enclose answers for a balanced parentheses sequence.
/*! \param bp A bit_vector representing a balanced parentheses sequence.
 *  \param enclose Reference to the result.
 *  \pre bp represents a balanced parentheses sequence.
 *  \par Time complexity
 *       \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
 *  \par Space complexity
 *       \f$ \Order{n + 2n\log n } \f$
 */
template<class int_vector>
void calculate_enclose(const bit_vector& bp, int_vector& enclose)
{
    enclose = int_vector(bp.size(), 0, bits::hi(bp.size())+1);
    std::stack<uint64_t> opening_parenthesis;
    for (uint64_t i=0; i < bp.size(); ++i) {
        if (bp[i]) {// opening parenthesis
            if (!opening_parenthesis.empty()) {
                uint64_t position = opening_parenthesis.top();
                enclose[i] = position;
                assert(enclose[i]==position);
            } else
                enclose[i] = bp.size();
            opening_parenthesis.push(i);
        } else { // closing parenthesis
            uint64_t position = opening_parenthesis.top();
            enclose[i] = position; // find open answer if i is a closing parenthesis
            opening_parenthesis.pop();
        }
    }
    // assert that the sequence is balanced
    assert(opening_parenthesis.empty());
}

uint64_t
near_find_close(const bit_vector& bp, const uint64_t i,
                const uint64_t block_size);

uint64_t
near_find_closing(const bit_vector& bp, uint64_t i,
                  uint64_t closings,
                  const uint64_t block_size);

uint64_t
near_fwd_excess(const bit_vector& bp, uint64_t i,
                bit_vector::difference_type rel, const uint64_t block_size);

//! Calculate the position with minimal excess value in the interval [l..r].
/*! \param bp The bit_vector which represents the parentheses sequence
 *  \param l  The left border of the interval.
 *	\param r  The right border of the interval.
 *  \param min_rel_ex Reference to the relative minimal excess value with regards to excess(bp[l])
 */
uint64_t
near_rmq(const bit_vector& bp, uint64_t l, uint64_t r,
         bit_vector::difference_type& min_rel_ex);

//! Near backward excess
/* This method searches the maximal parenthesis j, with \f$ j\leq i \f$,
 * such that \f$ excess(j) = excess(i+1)+rel \f$ and i < bp.size()-1
 */
uint64_t
near_bwd_excess(const bit_vector& bp, uint64_t i,
                bit_vector::difference_type rel, const uint64_t block_size);

uint64_t
near_find_open(const bit_vector& bp, uint64_t i, const uint64_t block_size);

uint64_t
near_find_opening(const bit_vector& bp, uint64_t i, const uint64_t openings,
                  const uint64_t block_size);

//! Find the opening parenthesis of the enclosing pair if this parenthesis is near.
/*!
 * \param bp bit_vector containing the representation of the balanced parentheses sequence.
 * \param i Position of the opening parenthesis for which we search the position of the opening parenthesis of the enclosing parentheses pair.
 * \param block_size Number of entries to search for the corresponding opening parenthesis of the enclosing parentheses pair.
 * \return If no near enclose exists return i, otherwise the position of the opening parenthesis of the enclosing pair.
 * \pre We assert that \f$ bp[i]=1 \f$
 */
// TODO: implement a fast version using lookup-tables of size 8
uint64_t
near_enclose(const bit_vector& bp, uint64_t i, const uint64_t block_size);

uint64_t
near_rmq_open(const bit_vector& bp, const uint64_t begin, const uint64_t end);

}// end namespace sdsl

#endif