This file is indexed.

/usr/include/sdsl/inv_perm_support.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* sdsl - succinct data structures library
    Copyright (C) 2014 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file inv_perm_support.hpp
    \brief inv_perm_support.hpp contains a class which adds access to the
           inverse of a permutation.
	\author Simon Gog
*/
#ifndef INCLUDED_SDSL_INV_PERM_SUPPORT
#define INCLUDED_SDSL_INV_PERM_SUPPORT

#include "int_vector.hpp"
#include "iterators.hpp"
#include "bit_vectors.hpp"
#include "rank_support.hpp"

namespace sdsl
{

//! Class inv_perm_support adds access to the inverse of a permutation.
/*!
 * \tparam t_s    Sampling parameter of the inverse permutation.
 * \tparam t_bv   Type of the bitvector used to indicate back-pointers.
 * \tparam t_rank Type of rank_support to rank the indicator bitvector.
 *
 * This support class adds access to the inverse of a permutation in at
 * most \(t_s\) steps. It takes about \(1/t_s \log n\) space, where \(n\)
 * is the size of the supported permutation.
 *
 * \par References
 *      [1] J. Munro, R. Raman, V. Raman, S. Rao: ,,Succinct representation
 *          of permutations'', Proceedings of ICALP 2003
 */
template<uint64_t t_s=32, class t_bv=bit_vector, class t_rank=typename bit_vector::rank_1_type>
class inv_perm_support
{
    public:
        typedef int_vector<>                                   iv_type;
        typedef iv_type::size_type                             size_type;
        typedef iv_type::value_type                            value_type;
        typedef iv_type::difference_type                       difference_type;
        typedef random_access_const_iterator<inv_perm_support> const_iterator;
        typedef t_bv                                           bit_vector_type;
        typedef t_rank                                         rank_type;
    private:
        const iv_type*  m_v = nullptr;   // pointer to supported permutation
        iv_type         m_back_pointer;  // back pointers
        bit_vector_type m_marked;        // back pointer marking
        rank_type       m_rank_marked;   // rank support for back pointer marking
    public:

        inv_perm_support() {};

        inv_perm_support(const inv_perm_support& p) : m_v(p.m_v),
            m_back_pointer(p.m_back_pointer), m_marked(p.m_marked),
            m_rank_marked(p.m_rank_marked) {
            m_rank_marked.set_vector(&m_marked);
        }

        inv_perm_support(inv_perm_support&& p) {
            *this = std::move(p);
        }

        //! Constructor
        inv_perm_support(const iv_type* v) : m_v(v) {
            bit_vector marked = bit_vector(m_v->size(), 0);
            bit_vector done   = bit_vector(m_v->size(), 0);

            size_type max_back_pointer = 0;
            for (size_type i = 0; i < m_v->size(); ++i) {
                if (!done[i]) {
                    done[i] = 1;
                    size_type back_pointer=i, j = i, j_new=0;
                    uint64_t  steps = 0, all_steps = 0;
                    while ((j_new=(*m_v)[j]) != i) {
                        j = j_new;
                        done[j] = 1;
                        ++steps; ++all_steps;
                        if (t_s == steps) {
                            max_back_pointer = std::max(max_back_pointer, back_pointer);
                            marked[j] = 1;
                            steps = 0;
                            back_pointer = j;
                        }
                    }
                    if (all_steps > t_s) {
                        marked[i] = 1;
                        max_back_pointer = std::max(max_back_pointer, back_pointer);
                    }
                }
            }

            m_marked = t_bv(std::move(marked));
            util::init_support(m_rank_marked, &m_marked);

            done   = bit_vector(m_v->size(), 0);
            size_type n_bp = m_rank_marked(m_v->size());
            m_back_pointer = int_vector<>(n_bp, 0, bits::hi(max_back_pointer)+1);

            for (size_type i = 0; i < m_v->size(); ++i) {
                if (!done[i]) {
                    done[i] = 1;
                    size_type back_pointer = i, j = i, j_new=0;
                    uint64_t  steps = 0, all_steps = 0;
                    while ((j_new=(*m_v)[j]) != i) {
                        j = j_new;
                        done[j] = 1;
                        ++steps; ++all_steps;
                        if (t_s == steps) {
                            m_back_pointer[m_rank_marked(j)] = back_pointer;
                            steps = 0;
                            back_pointer = j;
                        }
                    }
                    if (all_steps > t_s) {
                        m_back_pointer[m_rank_marked(i)] = back_pointer;
                    }
                }
            }
        }

        //! Access operator
        value_type operator[](size_type i) const {
            size_type j = i, j_new=0;
            while ((j_new=(*m_v)[j]) != i) {
                if (m_marked[j]) {
                    j = m_back_pointer[m_rank_marked(j)];
                    while ((j_new=(*m_v)[j]) != i) j = j_new;
                } else {
                    j = j_new;
                }
            }
            return j;
        }

        size_type size() const {
            return nullptr == m_v ? 0 : m_v->size();
        }

        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }

        void set_vector(const iv_type* v) { m_v = v; }

        //! Assignment operation
        inv_perm_support& operator=(const inv_perm_support& p) {
            if (this != &p) {
                m_v            = p.m_v;
                m_back_pointer = p.m_back_pointer;
                m_marked       = p.m_marked;
                m_rank_marked  = p.m_rank_marked;
                m_rank_marked.set_vector(&m_marked);
            }
            return *this;
        }

        //! Assignment move operation
        inv_perm_support& operator=(inv_perm_support&& p) {
            if (this != &p) {
                m_v            = std::move(p.m_v);
                m_back_pointer = std::move(p.m_back_pointer);
                m_marked       = std::move(p.m_marked);
                m_rank_marked  = std::move(p.m_rank_marked);
                m_rank_marked.set_vector(&m_marked);
            }
            return *this;
        }

        //! Swap operation
        void swap(inv_perm_support& p) {
            if (this != &p) {
                m_back_pointer.swap(p.m_back_pointer);
                m_marked.swap(p.m_marked);
                util::swap_support(m_rank_marked, p.m_rank_marked, &m_marked, &(p.m_marked));
            }
        }

        //! Serialize into stream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_back_pointer.serialize(out, child, "back_pointer");
            written_bytes += m_marked.serialize(out, child, "marked");
            written_bytes += m_rank_marked.serialize(out, child, "rank_marked");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Load sampling from disk
        void load(std::istream& in) {
            m_back_pointer.load(in);
            m_marked.load(in);
            m_rank_marked.load(in, &m_marked);
        }
};

} // end namespace sdsl

#endif