This file is indexed.

/usr/include/sdsl/k2_treap.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/* sdsl - succinct data structures library
    Copyright (C) 2014 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file k2_treap.hpp
    \brief k2_treap.hpp contains a compact k^2-treap.
    \author Simon Gog
*/
#ifndef INCLUDED_SDSL_K2_TREAP
#define INCLUDED_SDSL_K2_TREAP

#include "sdsl/vectors.hpp"
#include "sdsl/bits.hpp"
#include "sdsl/k2_treap_helper.hpp"
#include "sdsl/k2_treap_algorithm.hpp"
#include <tuple>
#include <algorithm>
#include <climits>
#include <vector>

//! Namespace for the succinct data structure library.
namespace sdsl
{

//! A k^2-treap.
/*! A k^2-treap is an indexing structure for a set of weighted points. The set
 *  consists of triples (x,y,w), where the first two components x and y are
 *  the coordinates of the point and w is the point's weight.
 *
 *  The k^2 treap supports 4-sided range count queries and 4-sided prioritized
 *  range queries in 2d. Using the latter functionality it is also possible to
 *  support 6-sided range queries in 3d. An example can be found in
 *  examples/k2_treap_in_mem.cpp .
 *
 *  The k^2-treap constructed in-place. The construct method expects either
 *  a vector of std::array<X,3> elements (each array represent a tuple x,y,w)
 *  or a file prefix FILE. In the latter case three serialized int_vector<>
 *  have to be present at FILE.x, FILE.y, and FILE.w. One int_vector<> per
 *  component.
 *
 *  \par References
 *       [1] N. Brisaboa, G. de Bernardo, R. Konow, and G. Navarro:
 *           ,,$K^2$-Treaps: Range Top-$k$ Queries in Compact Space,
 *           Proceedings of SPIRE 2014.
 */
template<uint8_t  t_k,
         typename t_bv=bit_vector,
         typename t_rank=typename t_bv::rank_1_type,
         typename t_max_vec=dac_vector<>>
class k2_treap
{
        static_assert(t_k>1, "t_k has to be larger than 1.");
        static_assert(t_k<=16, "t_k has to be smaller than 17.");

    public:
        typedef int_vector<>::size_type size_type;
        using node_type = k2_treap_ns::node_type;
        using point_type = k2_treap_ns::point_type;
        using t_p = k2_treap_ns::t_p;

        enum { k = t_k };

    private:
        uint8_t                   m_t = 0;
        t_bv                      m_bp;
        t_rank                    m_bp_rank;
        t_max_vec                 m_maxval;
        std::vector<int_vector<>> m_coord;
        int_vector<64>            m_level_idx;

        template<typename t_tv>
        uint8_t get_t(const t_tv& v)
        {
            using namespace k2_treap_ns;
            if (v.size() == 0) {
                return 0;
            }
            using t_e = typename t_tv::value_type;
            auto tupmax = [](t_e a) {
                return std::max(std::get<0>(a),std::get<1>(a));
            };
            auto max_it = std::max_element(std::begin(v), std::end(v), [&](t_e a, t_e b) {
                return tupmax(a) < tupmax(b);
            });
            uint64_t x = tupmax(*max_it);
            uint8_t res = 0;
            while (precomp<t_k>::exp(res) <= x) { ++res; }
            return res;
        }

    public:
        uint8_t& t = m_t;

        k2_treap() = default;

        k2_treap(const k2_treap& tr)
        {
            *this = tr;
        }

        k2_treap(k2_treap&& tr)
        {
            *this = std::move(tr);
        }

        //! Move assignment operator
        k2_treap& operator=(k2_treap&& tr)
        {
            if (this != &tr) {
                m_t = tr.m_t;
                m_bp = std::move(tr.m_bp);
                m_bp_rank = std::move(tr.m_bp_rank);
                m_bp_rank.set_vector(&m_bp);
                m_maxval = std::move(tr.m_maxval);
                m_coord = std::move(tr.m_coord);
                m_level_idx = std::move(tr.m_level_idx);
            }
            return *this;
        }

        //! Assignment operator
        k2_treap& operator=(k2_treap& tr)
        {
            if (this != &tr) {
                m_t = tr.m_t;
                m_bp = tr.m_bp;
                m_bp_rank = tr.m_bp_rank;
                m_bp_rank.set_vector(&m_bp);
                m_maxval = tr.m_maxval;
                m_coord = tr.m_coord;
                m_level_idx = tr.m_level_idx;
            }
            return *this;
        }

        //! Number of points in the 2^k treap
        size_type
        size() const
        {
            return m_maxval.size();
        }

        //! Swap operator
        void swap(k2_treap& tr)
        {
            if (this != &tr) {
                std::swap(m_t, tr.m_t);
                m_bp.swap(tr.m_bp);
                util::swap_support(m_bp_rank, tr.m_bp_rank, &m_bp, &(tr.m_bp));
                m_maxval.swap(tr.m_maxval);
                m_coord.swap(tr.m_coord);
                m_level_idx.swap(tr.m_level_idx);
            }
        }

        k2_treap(int_vector_buffer<>& buf_x,
                 int_vector_buffer<>& buf_y,
                 int_vector_buffer<>& buf_w)
        {
            using namespace k2_treap_ns;
            typedef int_vector_buffer<>* t_buf_p;
            std::vector<t_buf_p> bufs = {&buf_x, &buf_y, &buf_w};

            auto max_element = [](int_vector_buffer<>& buf) {
                uint64_t max_val = 0;
                for (auto val : buf) {
                    max_val = std::max((uint64_t)val, max_val);
                }
                return max_val;
            };

            auto max_buf_element = [&]() {
                uint64_t max_v = 0;
                for (auto buf : bufs) {
                    uint64_t _max_v = max_element(*buf);
                    max_v = std::max(max_v, _max_v);
                }
                return max_v;
            };

            uint64_t x = max_buf_element();
            uint8_t res = 0;
            while (res <= 64 and precomp<t_k>::exp(res) <= x) { ++res; }
            if (res == 65) {
                throw std::logic_error("Maximal element of input is too big.");
            }

            if (precomp<t_k>::exp(res) <= std::numeric_limits<uint32_t>::max()) {
                auto v = read<uint32_t,uint32_t,uint32_t>(bufs);
                construct(v, buf_x.filename());
            } else {
                auto v = read<uint64_t,uint64_t,uint64_t>(bufs);
                construct(v, buf_x.filename());
            }
        }

        template<typename t_x=uint64_t, typename t_y=uint64_t, typename t_w=uint64_t>
        std::vector<std::tuple<t_x, t_y, t_w>>
                                            read(std::vector<int_vector_buffer<>*>& bufs)
        {
            typedef std::vector<std::tuple<t_x, t_y, t_w>> t_tuple_vec;
            t_tuple_vec v = t_tuple_vec(bufs[0]->size());
            for (uint64_t j=0; j<v.size(); ++j) {
                std::get<0>(v[j]) = (*(bufs[0]))[j];
            }
            for (uint64_t j=0; j<v.size(); ++j) {
                std::get<1>(v[j]) = (*(bufs[1]))[j];
            }
            for (uint64_t j=0; j<v.size(); ++j) {
                std::get<2>(v[j]) = (*(bufs[2]))[j];
            }
            return v;
        }


        template<typename t_x, typename t_y, typename t_w>
        k2_treap(std::vector<std::tuple<t_x, t_y, t_w>>& v, std::string temp_file_prefix="")
        {
            if (v.size() > 0) {
                construct(v, temp_file_prefix);
            }
        }

        template<typename t_x, typename t_y, typename t_w>
        void construct(std::vector<std::tuple<t_x, t_y, t_w>>& v, std::string temp_file_prefix="")
        {
            using namespace k2_treap_ns;
            using t_e = std::tuple<t_x, t_y, t_w>;
            m_t = get_t(v);
            uint64_t M = precomp<t_k>::exp(t);
            t_e MM = t_e(M,M,M);

            std::string id_part = util::to_string(util::pid())
                                  + "_" + util::to_string(util::id());

            m_coord.resize(t);
            m_level_idx = int_vector<64>(1+t, 0);

            std::string val_file =  temp_file_prefix + "_k2_treap_"
                                    + id_part + ".sdsl";
            std::string bp_file  = temp_file_prefix + "_bp_" + id_part
                                   + ".sdsl";

            {
                int_vector_buffer<> val_buf(val_file, std::ios::out);
                int_vector_buffer<1> bp_buf(bp_file, std::ios::out);

                auto end = std::end(v);
                uint64_t last_level_nodes = 1;
                uint64_t level_nodes;
                for (uint64_t l=t, cc=0; l+1 > 0; --l) {
                    if (l > 0) {
                        m_level_idx[l-1] = m_level_idx[l] + last_level_nodes;
                        m_coord[l-1] = int_vector<>(2*last_level_nodes,0, bits::hi(precomp<t_k>::exp(l))+1);
                    }
                    level_nodes = 0;
                    cc = 0;
                    auto sp = std::begin(v);
                    for (auto ep = sp; ep != end;) {
                        ep = std::find_if(sp, end, [&sp,&l](const t_e& e) {
                            auto x1 = std::get<0>(*sp);
                            auto y1 = std::get<1>(*sp);
                            auto x2 = std::get<0>(e);
                            auto y2 = std::get<1>(e);
                            return    precomp<t_k>::divexp(x1,l) != precomp<t_k>::divexp(x2,l)
                                      or precomp<t_k>::divexp(y1,l) != precomp<t_k>::divexp(y2,l);
                        });
                        auto max_it = std::max_element(sp, ep, [](t_e a, t_e b) {
                            if (std::get<2>(a) != std::get<2>(b))
                                return std::get<2>(a) < std::get<2>(b);
                            else if (std::get<0>(a) != std::get<0>(b))
                                return std::get<0>(a) > std::get<0>(b);
                            return std::get<1>(a) > std::get<1>(b);
                        });
                        if (l > 0) {
                            m_coord[l-1][2*cc]   = precomp<t_k>::modexp(std::get<0>(*max_it), l);
                            m_coord[l-1][2*cc+1] = precomp<t_k>::modexp(std::get<1>(*max_it), l);
                            ++cc;
                        }

                        val_buf.push_back(std::get<2>(*max_it));
                        *max_it = MM;
                        --ep;
                        std::swap(*max_it, *ep);
                        if (l > 0) {
                            auto _sp = sp;

                            for (uint8_t i=0; i < t_k; ++i) {
                                auto _ep = ep;
                                if (i+1 < t_k) {
                                    _ep = std::partition(_sp, ep, [&i,&l](const t_e& e) {
                                        return precomp<t_k>::divexp(std::get<0>(e),l-1)%t_k <= i;
                                    });
                                }
                                auto __sp = _sp;
                                for (uint8_t j=0; j < t_k; ++j) {
                                    auto __ep = _ep;
                                    if (j+1 < t_k) {
                                        __ep = std::partition(__sp, _ep, [&j,&l](const t_e& e) {
                                            return precomp<t_k>::divexp(std::get<1>(e),l-1)%t_k <= j;
                                        });
                                    }
                                    bool not_empty = __ep > __sp;
                                    bp_buf.push_back(not_empty);
                                    level_nodes += not_empty;
                                    __sp = __ep;
                                }
                                _sp = _ep;
                            }
                        }
                        ++ep;
                        sp = ep;
                    }
                    end = std::remove_if(begin(v), end, [&](t_e e) {
                        return e == MM;
                    });
                    last_level_nodes = level_nodes;
                }
            }
            bit_vector bp;
            load_from_file(bp, bp_file);
            {
                int_vector_buffer<> val_rw(val_file, std::ios::in | std::ios::out);
                int_vector_buffer<> val_r(val_file, std::ios::in);
                uint64_t bp_idx = bp.size();
                uint64_t r_idx = m_level_idx[0];
                uint64_t rw_idx = val_rw.size();
                while (bp_idx > 0) {
                    --r_idx;
                    for (size_t i=0; i < t_k*t_k; ++i) {
                        if (bp[--bp_idx]) {
                            --rw_idx;
                            val_rw[rw_idx] = val_r[r_idx] - val_rw[rw_idx];
                        }
                    }
                }
            }
            {
                int_vector_buffer<> val_r(val_file);
                m_maxval = t_max_vec(val_r);
            }
            {
                bit_vector _bp;
                _bp.swap(bp);
                m_bp = t_bv(_bp);
            }
            util::init_support(m_bp_rank, &m_bp);
            sdsl::remove(bp_file);
            sdsl::remove(val_file);
        }


        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr,
                            std::string name="")const
        {
            structure_tree_node* child = structure_tree::add_child(
                                             v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_t, out, child, "t");
            written_bytes += m_bp.serialize(out, child, "bp");
            written_bytes += m_bp_rank.serialize(out, child, "bp_rank");
            written_bytes += serialize_vector(m_coord, out, child, "coord");
            written_bytes += m_maxval.serialize(out, child, "maxval");
            written_bytes += m_level_idx.serialize(out, child, "level_idx");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in)
        {
            read_member(m_t, in);
            m_bp.load(in);
            m_bp_rank.load(in);
            m_bp_rank.set_vector(&m_bp);
            m_coord.resize(t);
            load_vector(m_coord, in);
            m_maxval.load(in);
            m_level_idx.load(in);
        }

        node_type
        root() const
        {
            return node_type(t, t_p(0,0), 0, m_maxval[0],
                             t_p(m_coord[t-1][0], m_coord[t-1][1]));
        }

        bool
        is_leaf(const node_type& v) const
        {
            return v.idx >= m_bp.size();
        }

        std::vector<node_type>
        children(const node_type& v) const
        {
            using namespace k2_treap_ns;
            std::vector<node_type> res;
            if (!is_leaf(v)) {
                uint64_t rank = m_bp_rank(v.idx);
                auto x = std::real(v.p);
                auto y = std::imag(v.p);

                for (size_t i=0; i<t_k; ++i) {
                    for (size_t j=0; j<t_k; ++j) {
                        // get_int better for compressed bitvectors
                        // or introduce cache for bitvectors
                        if (m_bp[v.idx+t_k*i+j]) {
                            ++rank;

                            auto _x = x + i*precomp<t_k>::exp(v.t-1);
                            auto _y = y + j*precomp<t_k>::exp(v.t-1);

                            auto _max_v = v.max_v - m_maxval[rank];
                            auto _max_p = t_p(_x, _y);
                            if (v.t > 1) {
                                auto y = rank-m_level_idx[v.t-1];
                                _max_p = t_p(_x+m_coord[v.t-2][2*y],
                                             _y+m_coord[v.t-2][2*y+1]);
                            }
                            res.emplace_back(v.t-1, t_p(_x,_y), rank*t_k*t_k,
                                             _max_v, _max_p);
                        }
                    }
                }
            }
            return res;
        }

};

}
#endif