This file is indexed.

/usr/include/sdsl/memory_management.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*!\file memory_management.hpp
   \brief memory_management.hpp contains two function for allocating and deallocating memory
   \author Simon Gog
*/
#ifndef INCLUDED_SDSL_MEMORY_MANAGEMENT
#define INCLUDED_SDSL_MEMORY_MANAGEMENT

#include "uintx_t.hpp"
#include "util.hpp"
#include <map>
#include <iostream>
#include <cstdlib>
#include <mutex>
#include <chrono>
#include <cstring>
#include <set>
#include <cstddef>
#include <stack>
#include "config.hpp"

namespace sdsl
{

class memory_monitor;

template<format_type F>
void write_mem_log(std::ostream& out,const memory_monitor& m);

class memory_monitor
{
    public:
        using timer = std::chrono::high_resolution_clock;
        struct mm_alloc {
            timer::time_point timestamp;
            int64_t usage;
            mm_alloc(timer::time_point t,int64_t u) : timestamp(t) , usage(u) {};
        };
        struct mm_event {
            std::string name;
            std::vector<mm_alloc> allocations;
            mm_event(std::string n,int64_t usage) : name(n) {
                allocations.emplace_back(timer::now(),usage);
            };
            bool operator< (const mm_event& a) const {
                if (a.allocations.size() && this->allocations.size()) {
                    if (this->allocations[0].timestamp == a.allocations[0].timestamp) {
                        return this->allocations.back().timestamp < a.allocations.back().timestamp;
                    } else {
                        return this->allocations[0].timestamp < a.allocations[0].timestamp;
                    }
                }
                return true;
            }
        };
        struct mm_event_proxy {
            bool add;
            timer::time_point created;
            mm_event_proxy(const std::string& name,int64_t usage,bool a) : add(a) {
                if (add) {
                    auto& m = the_monitor();
                    std::lock_guard<util::spin_lock> lock(m.spinlock);
                    m.event_stack.emplace(name,usage);
                }
            }
            ~mm_event_proxy() {
                if (add) {
                    auto& m = the_monitor();
                    std::lock_guard<util::spin_lock> lock(m.spinlock);
                    auto& cur = m.event_stack.top();
                    auto cur_time = timer::now();
                    cur.allocations.emplace_back(cur_time,m.current_usage);
                    m.completed_events.emplace_back(std::move(cur));
                    m.event_stack.pop();
                    // add a point to the new "top" with the same memory
                    // as before but just ahead in time
                    if (! m.event_stack.empty()) {
                        if (m.event_stack.top().allocations.size()) {
                            auto last_usage = m.event_stack.top().allocations.back().usage;
                            m.event_stack.top().allocations.emplace_back(cur_time,last_usage);
                        }
                    }
                }
            }
        };
        std::chrono::milliseconds log_granularity = std::chrono::milliseconds(20);
        int64_t current_usage = 0;
        bool track_usage = false;
        std::vector<mm_event> completed_events;
        std::stack<mm_event> event_stack;
        timer::time_point start_log;
        timer::time_point last_event;
        util::spin_lock spinlock;
    private:
        // disable construction of the object
        memory_monitor() {};
        ~memory_monitor() {
            if (track_usage) {
                stop();
            }
        }
        memory_monitor(const memory_monitor&) = delete;
        memory_monitor& operator=(const memory_monitor&) = delete;
    private:
        static memory_monitor& the_monitor() {
            static memory_monitor m;
            return m;
        }
    public:
        static void granularity(std::chrono::milliseconds ms) {
            auto& m = the_monitor();
            m.log_granularity = ms;
        }
        static int64_t peak() {
            auto& m = the_monitor();
            int64_t max = 0;
            for (auto events : m.completed_events) {
                for (auto alloc : events.allocations) {
                    if (max < alloc.usage) {
                        max = alloc.usage;
                    }
                }
            }
            return max;
        }

        static void start() {
            auto& m = the_monitor();
            m.track_usage = true;
            // clear if there is something there
            if (m.completed_events.size()) {
                m.completed_events.clear();
            }
            while (m.event_stack.size()) {
                m.event_stack.pop();
            }
            m.start_log = timer::now();
            m.current_usage = 0;
            m.last_event = m.start_log;
            m.event_stack.emplace("unknown",0);
        }
        static void stop() {
            auto& m = the_monitor();
            while (! m.event_stack.empty()) {
                m.completed_events.emplace_back(std::move(m.event_stack.top()));
                m.event_stack.pop();
            }
            m.track_usage = false;
        }
        static void record(int64_t delta) {
            auto& m = the_monitor();
            if (m.track_usage) {
                std::lock_guard<util::spin_lock> lock(m.spinlock);
                auto cur = timer::now();
                if (m.last_event + m.log_granularity < cur) {
                    m.event_stack.top().allocations.emplace_back(cur,m.current_usage);
                    m.current_usage = m.current_usage + delta;
                    m.event_stack.top().allocations.emplace_back(cur,m.current_usage);
                    m.last_event = cur;
                } else {
                    if (m.event_stack.top().allocations.size()) {
                        m.current_usage = m.current_usage + delta;
                        m.event_stack.top().allocations.back().usage = m.current_usage;
                        m.event_stack.top().allocations.back().timestamp = cur;
                    }
                }
            }
        }
        static mm_event_proxy event(const std::string& name) {
            auto& m = the_monitor();
            if (m.track_usage) {
                return mm_event_proxy(name,m.current_usage,true);
            }
            return mm_event_proxy(name,m.current_usage,false);
        }
        template<format_type F>
        static void write_memory_log(std::ostream& out) {
            write_mem_log<F>(out,the_monitor());
        }
};

#pragma pack(push, 1)
typedef struct mm_block {
    size_t size;
    struct mm_block* next;
    struct mm_block* prev;
} mm_block_t;

typedef struct bfoot {
    size_t size;
} mm_block_foot_t;
#pragma pack(pop)

#include <sys/mman.h>

class hugepage_allocator
{
    private:
        uint8_t* m_base = nullptr;
        mm_block_t* m_first_block = nullptr;
        uint8_t* m_top = nullptr;
        size_t m_total_size = 0;
        std::multimap<size_t,mm_block_t*> m_free_large;
    private:
        size_t determine_available_hugepage_memory();
        void coalesce_block(mm_block_t* block);
        void split_block(mm_block_t* bptr,size_t size);
        uint8_t* hsbrk(size_t size);
        mm_block_t* new_block(size_t size);
        void remove_from_free_set(mm_block_t* block);
        void insert_into_free_set(mm_block_t* block);
        mm_block_t* find_free_block(size_t size_in_bytes);
        mm_block_t* last_block();
        void print_heap();
    public:
        void init(SDSL_UNUSED size_t size_in_bytes = 0) {
#ifdef MAP_HUGETLB
            if (size_in_bytes == 0) {
                size_in_bytes = determine_available_hugepage_memory();
            }

            m_total_size = size_in_bytes;
            m_base = (uint8_t*) mmap(nullptr, m_total_size,
                                     (PROT_READ | PROT_WRITE),
                                     (MAP_HUGETLB | MAP_ANONYMOUS | MAP_PRIVATE), 0, 0);
            if (m_base == MAP_FAILED) {
                throw std::system_error(ENOMEM,std::system_category(),
                                        "hugepage_allocator could not allocate hugepages");
            } else {
                // init the allocator
                m_top = m_base;
                m_first_block = (mm_block_t*) m_base;
            }
#else
            throw std::system_error(ENOMEM,std::system_category(),
                                    "hugepage_allocator: MAP_HUGETLB / hugepage support not available");
#endif
        }
        void* mm_realloc(void* ptr, size_t size);
        void* mm_alloc(size_t size_in_bytes);
        void mm_free(void* ptr);
        bool in_address_space(void* ptr) {
            // check if ptr is in the hugepage address space
            if (ptr == nullptr) {
                return true;
            }
            if (ptr >= m_base && ptr < m_top) {
                return true;
            }
            return false;
        }
        static hugepage_allocator& the_allocator() {
            static hugepage_allocator a;
            return a;
        }
};

class memory_manager
{
    private:
        bool hugepages = false;
    private:
        static memory_manager& the_manager() {
            static memory_manager m;
            return m;
        }
    public:
        static uint64_t* alloc_mem(size_t size_in_bytes) {
            auto& m = the_manager();
            if (m.hugepages) {
                return (uint64_t*) hugepage_allocator::the_allocator().mm_alloc(size_in_bytes);
            } else {
                return (uint64_t*) calloc(size_in_bytes,1);
            }
        }
        static void free_mem(uint64_t* ptr) {
            auto& m = the_manager();
            if (m.hugepages and hugepage_allocator::the_allocator().in_address_space(ptr)) {
                hugepage_allocator::the_allocator().mm_free(ptr);
            } else {
                std::free(ptr);
            }
        }
        static uint64_t* realloc_mem(uint64_t* ptr,size_t size) {
            auto& m = the_manager();
            if (m.hugepages and hugepage_allocator::the_allocator().in_address_space(ptr)) {
                return (uint64_t*) hugepage_allocator::the_allocator().mm_realloc(ptr,size);
            } else {
                return (uint64_t*) realloc(ptr,size);
            }
        }
    public:
        static void use_hugepages(size_t bytes = 0) {
            auto& m = the_manager();
            hugepage_allocator::the_allocator().init(bytes);
            m.hugepages = true;
        }
        template<class t_vec>
        static void resize(t_vec& v, const typename t_vec::size_type size) {
            uint64_t old_size_in_bytes = ((v.m_size+63)>>6)<<3;
            uint64_t new_size_in_bytes = ((size+63)>>6)<<3;
            bool do_realloc = old_size_in_bytes != new_size_in_bytes;
            v.m_size = size;
            if (do_realloc || v.m_data == nullptr) {
                // Note that we allocate 8 additional bytes if m_size % 64 == 0.
                // We need this padding since rank data structures do a memory
                // access to this padding to answer rank(size()) if size()%64 ==0.
                // Note that this padding is not counted in the serialize method!
                size_t allocated_bytes = (((size+64)>>6)<<3);
                v.m_data = memory_manager::realloc_mem(v.m_data,allocated_bytes);
                if (allocated_bytes != 0 && v.m_data == nullptr) {
                    throw std::bad_alloc();
                }
                // update and fill with 0s
                if (v.bit_size() < v.capacity()) {
                    bits::write_int(v.m_data+(v.bit_size()>>6), 0, v.bit_size()&0x3F, v.capacity() - v.bit_size());
                }
                if (((v.m_size) % 64) == 0) {  // initialize unreachable bits with 0
                    v.m_data[v.m_size/64] = 0;
                }

                // update stats
                if (do_realloc) {
                    memory_monitor::record((int64_t)new_size_in_bytes-(int64_t)old_size_in_bytes);
                }
            }
        }
        template<class t_vec>
        static void clear(t_vec& v) {
            int64_t size_in_bytes = ((v.m_size+63)>>6)<<3;
            // remove mem
            memory_manager::free_mem(v.m_data);
            v.m_data = nullptr;

            // update stats
            if (size_in_bytes) {
                memory_monitor::record(size_in_bytes*-1);
            }
        }
};

} // end namespace

#endif