This file is indexed.

/usr/include/sdsl/qsufsort.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/* qsufsort.c
   Copyright 1999, N. Jesper Larsson, all rights reserved.

   This file contains an implementation of the algorithm presented in "Faster
   Suffix Sorting" by N. Jesper Larsson (jesper@cs.lth.se) and Kunihiko
   Sadakane (sada@is.s.u-tokyo.ac.jp).

   This software may be used freely for any purpose. However, when distributed,
   the original source must be clearly stated, and, when the source code is
   distributed, the copyright notice must be retained and any alterations in
   the code must be clearly marked. No warranty is given regarding the quality
   of this software.*/
/* sdsl - succinct data structures library
    Copyright (C) 2012 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file qsufsort.hpp
    \brief qsufsort.hpp contains the interface for the suffix array construction algorithm of Larsson.
	Larssons code was downloaded from http://www.larsson.dogma.net/qsufsort.c and adapted to the
	use of sdsl bitvectors.
	\author Simon Gog
*/

#ifndef INCLUDED_SDSL_QSUFSORT
#define INCLUDED_SDSL_QSUFSORT

#define DBG_OUT if(0)std::cout

#include <sdsl/int_vector.hpp>

namespace sdsl
{
namespace qsufsort
{

template<class int_vector_type=int_vector<> >
class sorter;

//void sort(int_iter text, int_iter sa, int64_t n, int64_t k, int64_t l);

//! Construct a suffix array for the sequence stored in a file.
/*!
 * \param sa		A reference to the resulting suffix array.
 * \param file  	Name of the file.
 * \param num_bytes Bytes per symbol in the file. I.e.
 *                  - num_bytes=1: byte sequence
 *                  - num_bytes=2: sequence of two byte symbols
 *                  - num_bytes=4: sequence of four byte symbols
 *                  - num_bytes=8: sequence of eight byte symbols.
 *                  - num_bytes=0: the algorithm assumes a serialized
 *                                 int_vector<> in the file and
 *                                 loads it.
 * \par Note
 *      If `int_vector_type` is `int_vector<>` then the bit-width of `sa` is
 *      the maximum of `bits::hi( max(sa.size()-1, 0) )` and the
 *      bit-width of the text.
 */
// TODO: problem when int_width==64!!!
template<class int_vector_type>
void construct_sa(int_vector_type& sa, const char* file, uint8_t num_bytes)
{
    sorter<int_vector_type> s;
    s.sort(sa, file, num_bytes);
};

template<class int_vector_type, class t_vec>
void construct_sa(int_vector_type& sa, t_vec& text)
{
    sorter<int_vector_type> s;
    s.sort(sa, text);
};

template<class int_vector_type>
class sorter
{
        typedef int_vector_type tIV;
        typedef typename tIV::iterator int_iter;
        typedef typename tIV::size_type size_type;

    private:

        int_iter m_SA,    // group array, ultimately suffix array.
                 m_VV;    // inverse array, ultimately inverse of SA.
        uint64_t m_rr,    // number of symbols aggregated by transform.
                 m_hh;    // length of already-sorted prefixes.
        uint8_t  m_msb;   // most significant bit position starting from 0
        uint64_t m_msb_mask;// mask for 1ULL<<msb

        inline int64_t to_sign(uint64_t x)const {
            return x & m_msb_mask ? -((int64_t)(x&~m_msb_mask)) : x;
        }
        // return the absolute value of integer x
        inline int64_t mark_pos(uint64_t x)const {
            return (x&~m_msb_mask);
        }
        // mark the number x as negative
        inline int64_t mark_neg(uint64_t x)const {
            return x|m_msb_mask;
        }
        // check if x is not negative
        inline bool     not_neg(uint64_t x)const {
            return !(x>>m_msb);
        }
        // check if x is negative
        inline bool     is_neg(uint64_t x)const {
            return x&m_msb_mask;
        }
        // returns the key of iterator p at the current sorting depth
        inline uint64_t key(const int_iter& p)const {
            return m_VV[*p+m_hh];
        }
        // swap the value of two iterators
        inline void swap(int_iter& p, int_iter& q)const {
            uint64_t tmp = *p; *p=*q; *q=tmp;
        }
        // select the median out of 3 elements
        inline const int_iter& med3(const int_iter& a, const int_iter& b, const int_iter& c)const {
            return key(a)<key(b)? (key(b)<key(c)?b:(key(a)<key(c)?c:a))
                       : (key(b)>key(c)?b:(key(a)>key(c)?c:a));
        }

        /* Subroutine for select_sort_split and sort_split. Sets group numbers for a
           group whose lowest position in m_SA is pl and highest position is pm.*/
        void update_group(int_iter pl, int_iter pm) {
            int64_t g=pm-m_SA;          /* group number.*/
            m_VV[*pl]=g;                /* update group number of first position.*/
            if (pl==pm)
                *pl=mark_neg(1);         /* one element, sorted group.*/
            else
                do                       /* more than one element, unsorted group.*/
                    m_VV[*++pl]=g;        /* update group numbers.*/
                while (pl<pm);
        }

        /* Quadratic sorting method to use for small subarrays. To be able to update
           group numbers consistently, a variant of selection sorting is used.*/
        void select_sort_split(const int_iter& p, int64_t n) {
            int_iter pa, pb, pi, pn;
            uint64_t f, v;

            pa=p;                        /* pa is start of group being picked out.*/
            pn=p+n-1;                    /* pn is last position of subarray.*/
            while (pa<pn) {
                for (pi=pb=(pa+1), f=key(pa); pi<=pn; ++pi)
                    if ((v=key(pi))<f) {
                        f=v;                /* f is smallest key found.*/
                        swap(pi, pa);       /* place smallest element at beginning.*/
                        pb=pa+1;            /* pb is position for elements equal to f.*/
                    } else if (v==f) {     /* if equal to smallest key.*/
                        swap(pi, pb);       /* place next to other smallest elements.*/
                        ++pb;
                    }
                update_group(pa, pb-1);   /* update group values for new group.*/
                pa=pb;                    /* continue sorting rest of the subarray.*/
            }
            if (pa==pn) {                /* check if last part is single element.*/
                m_VV[*pa]=pa-m_SA;
                *pa=mark_neg(1);          /* sorted group.*/
            }
        }

        /* Subroutine for sort_split, algorithm by Bentley & McIlroy.*/
        uint64_t choose_pivot(const int_iter& p, int64_t n) {
            int_iter pl, pm, pn;
            int64_t s;

            pm=p+(n>>1);                 /* small arrays, middle element.*/
            if (n>7LL) {
                pl=p;
                pn=p+n-1;
                if (n>40LL) {               /* big arrays, pseudomedian of 9.*/
                    s=n>>3;
                    pl=med3(pl, pl+s, pl+s+s);
                    pm=med3(pm-s, pm, pm+s);
                    pn=med3(pn-s-s, pn-s, pn);
                }
                pm=med3(pl, pm, pn);      /* midsize arrays, median of 3.*/
            }
            return key(pm);
        }

        /* Sorting routine called for each unsorted group. Sorts the array of integers
           (suffix numbers) of length n starting at p. The algorithm is a ternary-split
           quicksort taken from Bentley & McIlroy, "Engineering a Sort Function",
           Software -- Practice and Experience 23(11), 1249-1265 (November 1993). This
           function is based on Program 7.*/
        void sort_split(const int_iter& p, int64_t n) {
            int_iter pa, pb, pc, pd, pl, pm, pn;
            uint64_t f, v;
            int64_t  s, t;

            if (n<7) {                   /* multi-selection sort smallest arrays.*/
                select_sort_split(p, n);
                return;
            }

            v=choose_pivot(p, n);
            pa=pb=p;        // pa: iterator for equal elements
            pc=pd=p+n-1;    // pc = right border (inclusive)
            while (1) {                  /* split-end partition.*/
                while (pb<=pc && (f=key(pb))<=v) { // go to the right as long as there are keys smaller equal than v
                    if (f==v) {
                        swap(pa, pb); ++pa; // swap equal chars to the left
                    }
                    ++pb;
                }
                while (pc>=pb && (f=key(pc))>=v) { // go to the left as long as there are keys bigger or equal to v
                    if (f==v) {
                        swap(pc, pd); --pd; // swap equal chars to the right end
                    }
                    --pc;
                }
                if (pb>pc)
                    break;
                swap(pb, pc); // swap element > v (pb) to the third part and element < v (pc) to the second
                ++pb;
                --pc;
            }
            pn=p+n;
            if ((s=pa-p)>(t=pb-pa))
                s=t;
            for (pl=p, pm=pb-s; s; --s, ++pl, ++pm)
                swap(pl, pm);
            if ((s=pd-pc)>(t=pn-pd-1))
                s=t;
            for (pl=pb, pm=pn-s; s; --s, ++pl, ++pm)
                swap(pl, pm);
            s=pb-pa;
            t=pd-pc;
            if (pa > pb) {
                if (s>0) {
                    std::cout<<"s="<<s<<">0 but should be <0; n="<<n<<std::endl;
                }
            }
            if (pc > pd) {
                if (t>0) {
                    std::cout<<"t="<<t<<">0 but should be <0; n="<<n<<std::endl;
                }
            }
            if (s>0)
                sort_split(p, s);
            update_group(p+s, p+n-t-1);
            if (t>0)
                sort_split(p+n-t, t);
        }

        /* Bucketsort for first iteration.

           Input: x[0...n-1] holds integers in the range 1...k-1, all of which appear
           at least once. x[n] is 0. (This is the corresponding output of transform.) k
           must be at most n+1. p is array of size n+1 whose contents are disregarded.

           Output: x is m_VV and p is m_SA after the initial sorting stage of the refined
           suffix sorting algorithm.*/
        void bucketsort(const int_iter& x, const int_iter& p, int64_t n, int64_t k) {
            int_iter pi;
            int64_t i, d, g;
            uint64_t c;

            for (pi=p; pi<p+k; ++pi)
                *pi=mark_neg(1);          /* mark linked lists empty.*/
            for (i=0; i<=n; ++i) {
                x[i]=p[c=x[i]];           /* insert in linked list.*/
                p[c]=i;
            }
            for (pi=p+k-1, i=n; pi>=p; --pi) {
                d=x[c=*pi];               /* c is position, d is next in list.*/
                x[c]=g=i;                 /* last position equals group number.*/
                if (not_neg(d)) {         /* if more than one element in group.*/
                    p[i--]=c;              /* p is permutation for the sorted x.*/
                    do {
                        d=x[c=d];           /* next in linked list.*/
                        x[c]=g;             /* group number in x.*/
                        p[i--]=c;           /* permutation in p.*/
                    } while (not_neg(d));
                } else
                    p[i--]=mark_neg(1);    /* one element, sorted group.*/
            }
        }

    public:

        /* Transforms the alphabet of x by attempting to aggregate several symbols into
           one, while preserving the suffix order of x. The alphabet may also be
           compacted, so that x on output comprises all integers of the new alphabet
           with no skipped numbers.

           Input: x is an array of size n+1 whose first n elements are positive
           integers in the range l...k-1. p is array of size n+1, used for temporary
           storage. q controls aggregation and compaction by defining the maximum value
           for any symbol during transformation: q must be at least k-l; if q<=n,
           compaction is guaranteed; if k-l>n, compaction is never done; if q is
           INT_MAX, the maximum number of symbols are aggregated into one.

           Output: Returns an integer j in the range 1...q representing the size of the
           new alphabet. If j<=n+1, the alphabet is compacted. The global variable r is
           set to the number of old symbols grouped into one. Only x[n] is 0.*/

        int64_t transform(const int_iter& x, const int_iter& p, int64_t n, int64_t k, int64_t l, int64_t q) {
            if (!(q >= k-l)) {
                std::cout << "q="<<q<<" k-l="<<k-l<<std::endl;
            }
            assert(q >= k-l);
            DBG_OUT<<"transform(n="<<n<<", k="<<k<<", l="<<l<<", q="<<q<<")"<<std::endl;
            uint64_t bb, cc,dd;
            int64_t jj;
            int_iter pi, pj;
            int s = bits::hi(k-l)+(k>l); /* s is number of bits in old symbol.*/
            uint8_t len = 0;                /* len is for overflow checking.*/
            m_rr = 0;
            for (bb=dd=0; (int)m_rr<n && (int)len < m_msb+1-s && (int64_t)(cc=dd<<s|(k-l)) <= q; ++m_rr, len+=s) {
                bb=bb<<s|(x[m_rr]-l+1);        /* bb is start of x in chunk alphabet.*/
                dd=cc;                      /* dd is max symbol in chunk alphabet.*/
            }
            DBG_OUT<<"m_rr="<<m_rr<<std::endl;
            uint64_t mm=(1ULL<<(m_rr-1)*s)-1;            /* mm masks off top old symbol from chunk.*/
            x[n]=l-1;                    /* emulate zero terminator.*/
            if ((int64_t)dd <= n) {                  /* if bucketing possible, compact alphabet.*/
                for (pi=p; pi<=p+dd; ++pi)
                    *pi=0;                 /* zero transformation table.*/
                for (pi=x+m_rr, cc=bb; pi<=x+n; ++pi) {
                    p[cc]=1;                /* mark used chunk symbol.*/
                    cc=(cc&mm)<<s|(*pi-l+1);  /* shift in next old symbol in chunk.*/
                }
                for (uint64_t i=1; i<m_rr; ++i) {     /* handle last r-1 positions.*/
                    p[cc]=1;                /* mark used chunk symbol.*/
                    cc=(cc&mm)<<s;            /* shift in next old symbol in chunk.*/
                }
                for (pi=p, jj=1; pi<=p+dd; ++pi)
                    if (*pi)
                        *pi=jj++;            /* j is new alphabet size.*/
                for (pi=x, pj=x+m_rr, cc=bb; pj<=x+n; ++pi, ++pj) {
                    *pi=p[cc];              /* transform to new alphabet.*/
                    cc=(cc&mm)<<s|(*pj-l+1);  /* shift in next old symbol in chunk.*/
                }
                while (pi<x+n) {          /* handle last r-1 positions.*/
                    *pi++=p[cc];            /* transform to new alphabet.*/
                    cc=(cc&mm)<<s;            /* shift right-end zero in chunk.*/
                }
            } else {                     /* bucketing not possible, don't compact.*/
                for (pi=x, pj=x+m_rr, cc=bb; pj<=x+n; ++pi, ++pj) {
                    *pi=cc;                 /* transform to new alphabet.*/
                    cc=(cc&mm)<<s|(*pj-l+1);  /* shift in next old symbol in chunk.*/
                }
                while (pi<x+n) {          /* handle last r-1 positions.*/
                    *pi++=cc;               /* transform to new alphabet.*/
                    cc=(cc&mm)<<s;            /* shift right-end zero in chunk.*/
                }
                jj=dd+1;                    /* new alphabet size.*/
            }
            x[n]=0;                      /* end-of-string symbol is zero.*/
            DBG_OUT<<"end transformation jj="<<jj<<std::endl;
            return jj;                    /* return new alphabet size.*/
        }

        /* Makes suffix array p of x. x becomes inverse of p. p and x are both of size
           n+1. Contents of x[0...n-1] are integers in the range l...k-1. Original
           contents of x[n] is disregarded, the n-th symbol being regarded as
           end-of-string smaller than all other symbols.*/
        void sort(const int_iter& x, const int_iter& p, int64_t n, int64_t k, int64_t l) {
            int_iter pi, pk;
            m_VV=x;                         /* set global values.*/
            m_SA=p;
            if (n>=k-l) {                /* if bucketing possible,*/
                int64_t j = transform(m_VV, m_SA, n, k, l, n);
                DBG_OUT<<"begin bucketsort j="<<j<<std::endl;
                bucketsort(m_VV, m_SA, n, j);   /* bucketsort on first r positions.*/
                DBG_OUT<<"end bucketsort"<<std::endl;
            } else {
                transform(m_VV, m_SA, n, k, l, m_msb_mask-1);
                DBG_OUT<<"initialize SA begin"<<std::endl;
                for (int64_t i=0; i<=n; ++i)
                    m_SA[i]=i;                /* initialize I with suffix numbers.*/
                DBG_OUT<<"initialize SA end"<<std::endl;
                m_hh=0;
                sort_split(m_SA, n+1);       /* quicksort on first r positions.*/
            }
            m_hh=m_rr;                 /* number of symbols aggregated by transform.*/
//            while ( is_neg(*m_SA) and mark_pos(*m_SA) <= n) {
            while (to_sign(*m_SA) >= -n) {
//std::cout<<"m_hh="<<m_hh<<std::endl;
                DBG_OUT<<"SA = ";
//for(size_t iii=0; iii<=(size_t)n; ++iii){
//	uint64_t D = *(m_SA+iii);
//	printf("%c%lld ", is_neg(D)?'-':' ', mark_pos(D));
//}
                DBG_OUT<<std::endl;
                DBG_OUT<<"TEXT = ";
//for(size_t iii=0; iii<=(size_t)n; ++iii){
//	uint64_t D = *(m_VV+iii);
//	printf("%c%lld ", is_neg(D)?'-':' ', mark_pos(D));
//}
                DBG_OUT<<std::endl;
                DBG_OUT<<"*m_SA="<< to_sign(*m_SA) <<std::endl;
//std::cout<<"mark_pos(*m_SA)="<<mark_pos(*m_SA)<<std::endl;
                pi=m_SA;                     /* pi is first position of group.*/
                int64_t sl=0;              /* sl is length of sorted groups.*/
                DBG_OUT<<"m_hh="<<m_hh<<std::endl;
                do {
                    uint64_t s = *pi;
                    if (to_sign(s) < (int64_t)0) {
                        pi += mark_pos(s);   /* skip over sorted group.*/
                        sl += mark_pos(s);   /* add length to sl.*/
                    } else {
                        if (sl) {
                            *(pi-sl)=mark_neg(sl);     /* combine sorted groups before pi.*/
                            sl=0;
                        }
                        pk=m_SA+m_VV[s]+1;        /* pk-1 is last position of unsorted group.*/
                        sort_split(pi, pk-pi);
                        pi=pk;              /* next group.*/
                    }
                } while ((pi-m_SA) <= n);
                if (sl)                   /* if the array ends with a sorted group.*/
                    *(pi-sl)=mark_neg(sl);           /* combine sorted groups at end of m_SA.*/
                m_hh=2*m_hh;                    /* double sorted-depth.*/
                DBG_OUT<<"m_hh="<<m_hh<<std::endl;
            }
            for (int64_t i=0; i<=n; ++i) {        /* reconstruct suffix array from inverse.*/
                m_SA[m_VV[i]]=i;
            }
        }

        void do_sort(tIV& sa, tIV& x) {
            assert(x.size()>0);
            DBG_OUT<<"x.width()="<< (int)x.width() <<std::endl;
            DBG_OUT<<"x.size()="<<x.size()<<std::endl;
            DBG_OUT<<"sa.width()="<<(int)sa.width()<<std::endl;
            DBG_OUT<<"sa.size()="<<sa.size()<<std::endl;
            if (x.size() == 1) {
                sa = tIV(1, 0);
                return;
            }

            int64_t max_symbol = 0, min_symbol = x.width() < 64 ? bits::lo_set[x.width()] : 0x7FFFFFFFFFFFFFFFLL;

            for (size_type i=0; i < x.size()-1; ++i) {
                max_symbol = std::max(max_symbol, (int64_t)x[i]);
                min_symbol = std::min(min_symbol, (int64_t)x[i]);
            }

            if (0 == min_symbol) {
                throw std::logic_error("Text contains 0-symbol. Suffix array can not be constructed.");
            }
            if (x[x.size()-1] > 0) {
                throw std::logic_error("Last symbol is not 0-symbol. Suffix array can not be constructed.");
            }
            DBG_OUT<<"sorter: min_symbol="<<min_symbol<<std::endl;
            DBG_OUT<<"sorter: max_symbol="<<max_symbol<<std::endl;

            int64_t n = x.size()-1;
            DBG_OUT<<"x.size()-1="<<x.size()-1<<" n="<<n<<std::endl;
            uint8_t width = std::max(bits::hi(max_symbol)+2, bits::hi(n+1)+2);
            DBG_OUT<<"sorter: width="<<(int)width<<" max_symbol_width="<<bits::hi(max_symbol)+1<<" n_width="<< bits::hi(n) <<std::endl;
            util::expand_width(x, width);
            sa = x;
            if (sa.width() < x.width()) {
                throw std::logic_error("Fixed size suffix array is to small for the specified text.");
                return;
            }

            m_msb = sa.width()-1;
            m_msb_mask = 1ULL<<m_msb;
            DBG_OUT<<"sorter: m_msb="<< (int)m_msb <<" m_msb_mask="<<m_msb_mask<<std::endl;
            sort(x.begin(), sa.begin(), x.size()-1, max_symbol+1, min_symbol);
        }


        void sort(tIV& sa, const char* file_name, uint8_t num_bytes) {
            DBG_OUT<<"sorter: sort("<<file_name<<")"<<std::endl;
            DBG_OUT<<"sizeof(int_vector<>::difference_type)="<<sizeof(int_vector<>::difference_type)<<std::endl;
            util::clear(sa); // free space for sa
            tIV x;
            if (num_bytes == 0 and typeid(typename tIV::reference) == typeid(uint64_t)) {
                DBG_OUT<<"sorter: use int_vector<64>"<<std::endl;
                int_vector<> temp;
                load_vector_from_file(temp, file_name, num_bytes);
                x.resize(temp.size());
                for (size_type i=0; i<temp.size(); ++i) x[i] = temp[i];
            } else {
                load_vector_from_file(x, file_name, num_bytes);
                util::bit_compress(x);
            }
            do_sort(sa, x);
        }

        template<class t_vec>
        void sort(tIV& sa, t_vec& text) {
            tIV x;
            x.resize(text.size());
            for (size_type i=0; i<text.size(); ++i) x[i] = text[i];
            do_sort(sa, x);
        }
};

} // end namespace qsufsort

} // end namespace sdsl

#endif