This file is indexed.

/usr/include/sdsl/rrr_vector_15.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/* sdsl - succinct data structures library
    Copyright (C) 2011-2013 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file rrr_vector.hpp
   \brief rrr_vector.hpp contains a specialisation of the sdsl::rrr_vector class,
          with block size k=15 and lookup table access.
   \author Simon Gog
*/
#ifndef INCLUDED_SDSL_RRR_VECTOR_15
#define INCLUDED_SDSL_RRR_VECTOR_15

#include "int_vector.hpp"
#include "util.hpp"
#include "rrr_helper.hpp" // for binomial helper class
#include "rrr_vector.hpp"
#include "iterators.hpp"
#include <vector>
#include <algorithm> // for next_permutation
#include <iostream>

//! Namespace for the succinct data structure library
namespace sdsl
{

// Helper class for the binomial coefficients \f$ 15 \choose k \f$
/*
 * Size of lookup tables:
 *  * m_nr_to_bin: 64 kB = (2^15 entries x 2 bytes)
 *  * m_bin_to_nr: 64 kB = (2^15 entries x 2 bytes)
 */
class binomial15
{
    public:
        typedef uint32_t number_type;
    private:

        static class impl
        {
            public:
                static const int n = 15;
                static const int MAX_SIZE=32;
                uint8_t m_space_for_bt[16];
                uint8_t m_space_for_bt_pair[256];
                uint64_t m_C[MAX_SIZE];
                int_vector<16> m_nr_to_bin;
                int_vector<16> m_bin_to_nr;

                impl() {
                    m_nr_to_bin.resize(1<<n);
                    m_bin_to_nr.resize(1<<n);
                    for (int i=0, cnt=0, class_cnt=0; i<=n; ++i) {
                        m_C[i] = cnt;
                        class_cnt = 0;
                        std::vector<bool> b(n,0);
                        for (int j=0; j<i; ++j) b[n-j-1] = 1;
                        do {
                            uint32_t x=0;
                            for (int k=0; k<n; ++k)
                                x |= ((uint32_t)b[n-k-1])<<(n-1-k);
                            m_nr_to_bin[cnt] = x;
                            m_bin_to_nr[x] = class_cnt;
                            ++cnt;
                            ++class_cnt;
                        } while (next_permutation(b.begin(), b.end()));
                        if (class_cnt == 1)
                            m_space_for_bt[i] = 0;
                        else
                            m_space_for_bt[i] = bits::hi(class_cnt)+1;
                    }
                    if (n == 15) {
                        for (int x=0; x<256; ++x) {
                            m_space_for_bt_pair[x] = m_space_for_bt[x>>4] + m_space_for_bt[x&0x0F];
                        }
                    }
                }
        } iii;

    public:

        static inline uint8_t space_for_bt(uint32_t i) {
            return iii.m_space_for_bt[i];
        }

        static inline uint32_t nr_to_bin(uint8_t k, uint32_t nr) {
            return iii.m_nr_to_bin[iii.m_C[k]+nr];
        }

        static inline uint32_t bin_to_nr(uint32_t bin) {
            return iii.m_bin_to_nr[bin];
        }

        static inline uint8_t space_for_bt_pair(uint8_t x) {
            return iii.m_space_for_bt_pair[x];
        }
};


//! A specialization of the rrr_vector class for a block_size of 15.
/*!
 *   \tparam t_rac  Random access integer vector. Use to store the block types.
 *
 *  Several tricks were used to speed-up the operations:
 *  * Whenever possible 2 4-bit blocks are decoded at once.
 *  * When the rank position lies in a block which consists only of zeros or
 *    ones (a uniform block), then we only have to sum up the values of the
 *    block type array between the last sampled position and the
 *    destination block. That can be done by using bit-parallelism on
 *    64-bit words.
*/
template<class t_rac, uint16_t t_k>
class rrr_vector<15, t_rac, t_k>
{
    public:
        typedef bit_vector::size_type                    size_type;
        typedef bit_vector::value_type                   value_type;
        typedef bit_vector::difference_type              difference_type;
        typedef t_rac                                    rac_type;
        typedef random_access_const_iterator<rrr_vector> iterator;
        typedef bv_tag                                   index_category;

        friend class rank_support_rrr<0, 15, t_rac, t_k>;
        friend class rank_support_rrr<1, 15, t_rac, t_k>;
        friend class select_support_rrr<0, 15, t_rac, t_k>;
        friend class select_support_rrr<1, 15, t_rac, t_k>;

        typedef rank_support_rrr<1, 15, t_rac, t_k> rank_1_type;
        typedef rank_support_rrr<0, 15, t_rac, t_k> rank_0_type;
        typedef select_support_rrr<1, 15, t_rac, t_k> select_1_type;
        typedef select_support_rrr<0, 15, t_rac, t_k> select_0_type;

        enum { block_size = 15 };
        typedef binomial15 bi_type;
    private:
        size_type    m_size = 0; // Size of the original bit_vector.
        rac_type     m_bt;       // Vector for block types (bt). bt equals the
        // number of set bits in the block.
        bit_vector   m_btnr;     // Compressed block type numbers.
        int_vector<> m_btnrp;    // Sample pointers into m_btnr.
        int_vector<> m_rank;     // Sample rank values.

        void copy(const rrr_vector& rrr) {
            m_size = rrr.m_size;
            m_bt = rrr.m_bt;
            m_btnr = rrr.m_btnr;
            m_btnrp = rrr.m_btnrp;
            m_rank = rrr.m_rank;
        }
    public:
        const rac_type& bt     = m_bt;
        const bit_vector& btnr = m_btnr;

        //! Default constructor
        /*! \param k Store rank samples and pointers each k-th blocks.
         */
        rrr_vector() {};

        //! Copy constructor
        rrr_vector(const rrr_vector& rrr) {
            copy(rrr);
        }

        //! Move constructor
        rrr_vector(rrr_vector&& rrr) : m_size(std::move(rrr.m_size)),
            m_bt(std::move(rrr.m_bt)),
            m_btnr(std::move(rrr.m_btnr)), m_btnrp(std::move(rrr.m_btnrp)),
            m_rank(std::move(rrr.m_rank)) {}

        //! Constructor
        /*!
        *  \param bv Uncompressed bitvector.
        *  \param k  Store rank samples and pointers each k-th blocks.
        */
        rrr_vector(const bit_vector& bv) {
            m_size = bv.size();
            int_vector<> bt_array;
            bt_array = int_vector<>(m_size/block_size+1, 0, bits::hi(block_size)+1);

            // (1) calculate the block types and store them in m_bt
            size_type pos = 0, i = 0, x;
            size_type btnr_pos = 0;
            size_type sum_rank = 0;
            while (pos + block_size <= m_size) { // handle all full blocks
                bt_array[ i++ ] = x = bits::cnt(bv.get_int(pos, block_size));
                sum_rank += x;
                btnr_pos += bi_type::space_for_bt(x);
                pos += block_size;
            }
            if (pos < m_size) { // handle last full block
                bt_array[ i++ ] = x = bits::cnt(bv.get_int(pos, m_size - pos));
                sum_rank += x;
                btnr_pos += bi_type::space_for_bt(x);
            }
            m_btnr  = bit_vector(std::max(btnr_pos, (size_type)64), 0); // max necessary for case: block_size == 1
            m_btnrp = int_vector<>((bt_array.size()+t_k-1)/t_k, 0,  bits::hi(btnr_pos)+1);

            m_rank  = int_vector<>((bt_array.size()+t_k-1)/t_k + ((m_size % (t_k*block_size))>0), 0, bits::hi(sum_rank)+1);
            //                                                                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
            //                                                                      only add a finishing block, if the last block of the superblock is not a dummy block
            // (2) calculate block type numbers and pointers into btnr and rank samples
            pos = 0; i = 0;
            btnr_pos= 0, sum_rank = 0;
            while (pos + block_size <= m_size) { // handle all full blocks
                if ((i % t_k) == 0) {
                    m_btnrp[ i/t_k ] = btnr_pos;
                    m_rank[ i/t_k ] = sum_rank;
                }
                uint16_t space_for_bt = bi_type::space_for_bt(x=bt_array[i++]);
                sum_rank += x;
                if (space_for_bt) {
                    m_btnr.set_int(btnr_pos, bi_type::bin_to_nr(bv.get_int(pos, block_size)), space_for_bt);
                }
                btnr_pos += space_for_bt;
                pos += block_size;
            }
            if (pos < m_size) { // handle last not full block
                if ((i % t_k) == 0) {
                    m_btnrp[ i/t_k ] = btnr_pos;
                    m_rank[ i/t_k ] = sum_rank;
                }
                uint16_t space_for_bt = bi_type::space_for_bt(x=bt_array[i++]);
                sum_rank += x;
                if (space_for_bt) {
                    m_btnr.set_int(btnr_pos, bi_type::bin_to_nr(bv.get_int(pos, m_size - pos)), space_for_bt);
                }
                btnr_pos += space_for_bt;
                assert(m_rank.size()-1 == ((i+t_k-1)/t_k));
            } else { // handle last empty full block
                assert(m_rank.size()-1 == ((i+t_k-1)/t_k));
            }
            // for technical reasons add an additional element to m_rank
            m_rank[ m_rank.size()-1 ] = sum_rank; // sum_rank contains the total number of set bits in bv
            m_bt = rac_type(std::move(bt_array));
        }

        //! Swap method
        void swap(rrr_vector& rrr) {
            if (this != &rrr) {
                std::swap(m_size, rrr.m_size);
                m_bt.swap(rrr.m_bt);
                m_btnr.swap(rrr.m_btnr);
                m_btnrp.swap(rrr.m_btnrp);
                m_rank.swap(rrr.m_rank);
            }
        }

        //! Accessing the i-th element of the original bit_vector
        /*! \param i An index i with \f$ 0 \leq i < size()  \f$.
           \return The i-th bit of the original bit_vector
        */
        value_type operator[](size_type i)const {
            size_type bt_idx = i/block_size ;
            uint8_t* bt = (uint8_t*)(m_bt.data());
            uint32_t i_bt = *(bt + (bt_idx/2));
            if (bt_idx%2 == 1) {
                i_bt >>= 4;
            } else {
                i_bt &= 0x0F;
            }
            if (i_bt == 0 or i_bt == block_size) {
                return i_bt > 0;
            }
            size_type sample_pos = bt_idx/t_k;
            size_type btnrp = m_btnrp[ sample_pos ];
            size_type j = (sample_pos*t_k);
            bt += j/2;
            if (j%2 == 1 and j < bt_idx) {
                btnrp += bi_type::space_for_bt((*bt++)>>4);
                ++j;
            }
            while (j+1 < bt_idx) {
                btnrp += bi_type::space_for_bt_pair(*(bt++));   // decode two entries at once
                j+=2;
            }
            if (j < bt_idx) {
                btnrp += bi_type::space_for_bt((*bt)&0x0F);
            }

            uint32_t btnr = m_btnr.get_int(btnrp, bi_type::space_for_bt(i_bt));

            uint8_t off = (uint8_t)(i % block_size); //i - bt_idx*block_size;
            return (bi_type::nr_to_bin(i_bt, btnr) >> off) & (uint32_t)1;
        }

        //! Get the integer value of the binary string of length len starting at position idx.
        /*! \param idx Starting index of the binary representation of the integer.
         *  \param len Length of the binary representation of the integer. Default value is 64.
         *   \returns The integer value of the binary string of length len starting at position idx.
         *
         *  \pre idx+len-1 in [0..size()-1]
         *  \pre len in [1..64]
         */
        uint64_t get_int(size_type idx, uint8_t len=64)const {
            uint64_t res = 0;
            size_type bb_idx = idx/block_size; // begin block index
            size_type bb_off = idx%block_size; // begin block offset
            uint16_t bt = m_bt[bb_idx];
            size_type sample_pos = bb_idx/t_k;
            size_type eb_idx = (idx+len-1)/block_size; // end block index
            if (bb_idx == eb_idx) {  // extract only in one block
                if (bt == 0) {   // all bits are zero
                    res = 0;
                } else if (bt == block_size) {  // all bits are zero
                    res = bits::lo_set[len];
                } else {
                    size_type btnrp = m_btnrp[ sample_pos ];
                    for (size_type j = sample_pos*t_k; j < bb_idx; ++j) {
                        btnrp += bi_type::space_for_bt(m_bt[j]);
                    }
                    uint32_t btnr = m_btnr.get_int(btnrp, bi_type::space_for_bt(bt));
                    res = (bi_type::nr_to_bin(bt, btnr) >> bb_off) & bits::lo_set[len];
                }
            } else { // solve multiple block case by recursion
                uint8_t b_len = block_size-bb_off;
                uint8_t b_len_sum = 0;
                do {
                    res |= get_int(idx, b_len) << b_len_sum;
                    idx += b_len;
                    b_len_sum += b_len;
                    len -= b_len;
                    b_len = block_size;
                    b_len = std::min(len, b_len);
                } while (len > 0);
            }
            return res;
        }


        //! Assignment operator
        rrr_vector& operator=(const rrr_vector& rrr) {
            if (this != &rrr) {
                copy(rrr);
            }
            return *this;
        }

        //! Move assignment
        rrr_vector& operator=(rrr_vector&& rrr) {
            swap(rrr);
            return *this;
        }

        //! Returns the size of the original bit vector.
        size_type size()const {
            return m_size;
        }

        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            size_type written_bytes = 0;
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += m_bt.serialize(out, child, "bt");
            written_bytes += m_btnr.serialize(out, child, "btnr");
            written_bytes += m_btnrp.serialize(out, child, "btnrp");
            written_bytes += m_rank.serialize(out, child, "rank_samples");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            m_bt.load(in);
            m_btnr.load(in);
            m_btnrp.load(in);
            m_rank.load(in);
        }

        iterator begin() const {
            return iterator(this, 0);
        }

        iterator end() const {
            return iterator(this, size());
        }
};


//! rank_support for the specialized rrr_vector class of block size 15.
/*! The first template parameter is the bit pattern of size one.
*/
template<uint8_t t_b, class t_rac, uint16_t t_k>
class rank_support_rrr<t_b, 15, t_rac, t_k>
{
    public:
        typedef rrr_vector<15, t_rac, t_k> bit_vector_type;
        typedef typename bit_vector_type::size_type size_type;
        typedef typename bit_vector_type::bi_type bi_type;
        enum { bit_pat = t_b };

    private:
        const bit_vector_type* m_v; //!< Pointer to the rank supported rrr_vector
        // TODO cache for sequential ranks
//        mutable size_type m_last_bt;
//        mutable size_type m_last_w; // store the last decoded word
//        uint16_t m_space_for_bt[256];
    public:
        //! Standard constructor
        /*! \param v Pointer to the rrr_vector, which should be supported
         */
        explicit rank_support_rrr(const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        //! Answers rank queries
        /*! \param i Argument for the length of the prefix v[0..i-1], with \f$0\leq i \leq size()\f$.
           \returns Number of 1-bits in the prefix [0..i-1] of the original bit_vector.
           \par Time complexity
                \f$ \Order{ sample\_rate of the rrr\_vector} \f$
        */
        const size_type rank(size_type i)const {
            size_type bt_idx = i/bit_vector_type::block_size;
            size_type sample_pos = bt_idx/t_k;
            size_type btnrp = m_v->m_btnrp[ sample_pos ];
            size_type rank  = m_v->m_rank[ sample_pos ];
            if (sample_pos+1 < m_v->m_rank.size()) {
                size_type diff_rank  = m_v->m_rank[ sample_pos+1 ] - rank;
                if (diff_rank == 0) {
                    return  rank_support_rrr_trait<t_b>::adjust_rank(rank, i);
                } else if (diff_rank == (size_type)bit_vector_type::block_size*t_k) {
                    return  rank_support_rrr_trait<t_b>::adjust_rank(
                                rank + i - sample_pos*t_k*bit_vector_type::block_size, i);
                }
            }
            uint8_t* bt = (uint8_t*)(m_v->m_bt.data());

            uint8_t last_bt = *(bt + (bt_idx/2));
            if (bt_idx%2 == 1) {
                last_bt >>= 4;
            } else {
                last_bt &= 0x0F;
            }
            // if the final block type consists only of ones or zeros, we don't have to
            // calculate the position pointer and can sum up rank in 64 bit chunks
            if (last_bt == 0 or last_bt == 15) {
                if (last_bt == 15)
                    rank += i % bit_vector_type::block_size;
                size_type j = (sample_pos*t_k) << 2;
                bt_idx = bt_idx << 2;
                if (bt_idx == j)
                    return rank_support_rrr_trait<t_b>::adjust_rank(rank, i);
                // now j < bt_idx
                const uint64_t* bt64 = m_v->m_bt.data() + (j >> 6); // get the word of the start
                uint8_t bt64_off = j & 0x3F; // get the offset in the word of the start
                const uint64_t* bt64_end = m_v->m_bt.data() + (bt_idx >> 6);
                uint8_t bt64_end_off = bt_idx & 0x3F;
                // Case (1)
                if (bt64 == bt64_end) {
                    uint64_t w = ((*bt64) >> bt64_off) & bits::lo_set[bt64_end_off-bt64_off];
                    w = (w & 0x0f0f0f0f0f0f0f0full) + ((w >> 4) & 0x0f0f0f0f0f0f0f0full);
                    rank += ((0x0101010101010101ull*w) >> 56);
                } else { // Case (2)
                    uint64_t w = ((*bt64) >> bt64_off);
                    w = (w & 0x0f0f0f0f0f0f0f0full) + ((w >> 4) & 0x0f0f0f0f0f0f0f0full);
                    rank += ((0x0101010101010101ull*w) >> 56);
                    while ((++bt64) != bt64_end) {
                        w = *bt64;
                        w = (w & 0x0f0f0f0f0f0f0f0full) + ((w >> 4) & 0x0f0f0f0f0f0f0f0full);
                        rank += ((0x0101010101010101ull*w) >> 56);
                    }
                    // now bt64 == bt64_end
                    if (bt64_end_off > 0) {
                        w = *bt64 << (64 - bt64_end_off);
                        w = (w & 0x0f0f0f0f0f0f0f0full) + ((w >> 4) & 0x0f0f0f0f0f0f0f0full);
                        rank += ((0x0101010101010101ull*w) >> 56);
                    }
                }
                return rank_support_rrr_trait<t_b>::adjust_rank(rank, i);  // necessary
            }
            size_type j = sample_pos*t_k;
            bt += j/2;
            if (j%2 == 1 and j < bt_idx) {
                const uint8_t r = (*bt++)>>4;
                rank += r;
                btnrp += bi_type::space_for_bt(r);
                ++j;
            }
            while (j+1 < bt_idx) {
                const uint8_t r = *(bt++);
                rank += (r>>4)+(r&0x0F);
                btnrp += bi_type::space_for_bt_pair(r);   // decode two entries at once
                j+=2;
            }
            if (j < bt_idx) {
                const uint8_t r = (*bt);
                rank += r&0x0F;
                btnrp += bi_type::space_for_bt(r&0x0F);
                ++j;
            }
            uint8_t off = i % bit_vector_type::block_size; //i - bt_idx*bit_vector_type::block_size;
            if (!off) {   // needed for special case: if i=size() is a multiple of block_size
                // the access to m_bt would cause a invalid memory access
                return rank_support_rrr_trait<t_b>::adjust_rank(rank, i);
            }
            uint32_t btnr = m_v->m_btnr.get_int(btnrp, bi_type::space_for_bt(last_bt));
            return rank_support_rrr_trait<t_b>::adjust_rank(rank +
                    bits::cnt(((uint64_t)(bi_type::nr_to_bin(last_bt, btnr))) & bits::lo_set[off]), i);
        }

        //! Short hand for rank(i)
        const size_type operator()(size_type i)const {
            return rank(i);
        }

        //! Returns the size of the original vector
        const size_type size()const {
            return m_v->size();
        }

        //! Set the supported vector.
        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        rank_support_rrr& operator=(const rank_support_rrr& rs) {
            if (this != &rs) {
                set_vector(rs.m_v);
            }
            return *this;
        }

        void swap(rank_support_rrr&) { }

        //! Load the data structure from a stream and set the supported vector.
        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        //! Serializes the data structure into a stream.
        size_type serialize(std::ostream&, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            structure_tree::add_size(child, 0);
            return 0;
        }
};


//! Select support for the specialized rrr_vector class of block size 15.
template<uint8_t t_b, class t_rac, uint16_t t_k>
class select_support_rrr<t_b, 15, t_rac, t_k>
{
    public:
        typedef rrr_vector<15, t_rac, t_k>          bit_vector_type;
        typedef typename bit_vector_type::size_type size_type;
        typedef typename bit_vector_type::bi_type     bi_type;
        enum { bit_pat = t_b };
    private:
        const bit_vector_type* m_v; //!< Pointer to the rank supported rrr_vector

        // TODO: hinted binary search
        size_type  select1(size_type i)const {
            if (m_v->m_rank[m_v->m_rank.size()-1] < i)
                return size();
            //  (1) binary search for the answer in the rank_samples
            size_type begin=0, end=m_v->m_rank.size()-1; // min included, max excluded
            size_type idx, rank;
            // invariant:  m_rank[end]   >= i
            //             m_rank[begin]  < i
            while (end-begin > 1) {
                idx  = (begin+end) >> 1; // idx in [0..m_rank.size()-1]
                rank = m_v->m_rank[idx];
                if (rank >= i)
                    end = idx;
                else { // rank < i
                    begin = idx;
                }
            }
            //   (2) linear search between the samples
            rank = m_v->m_rank[begin]; // now i>rank
            idx = begin * t_k; // initialize idx for select result
            size_type diff_rank  = m_v->m_rank[end] - rank;
            if (diff_rank == (size_type)bit_vector_type::block_size*t_k) {// optimisation for select<1>
                return idx*bit_vector_type::block_size + i-rank -1;
            }
            size_type btnrp = m_v->m_btnrp[ begin ];
            uint8_t bt = 0, s = 0; // temp variables for block_type and space for block type
            while (i > rank) {
                bt = m_v->m_bt[idx++];
                rank += bt;
                btnrp += (s=bi_type::space_for_bt(bt));
            }
            rank -= bt;
            uint32_t btnr = m_v->m_btnr.get_int(btnrp-s, s);
            return (idx-1) * bit_vector_type::block_size + bits::sel(bi_type::nr_to_bin(bt, btnr), i-rank);
        }

        // TODO: hinted binary search
        size_type  select0(size_type i)const {
            if ((size()-m_v->m_rank[m_v->m_rank.size()-1]) < i)
                return size();
            //  (1) binary search for the answer in the rank_samples
            size_type begin=0, end=m_v->m_rank.size()-1; // min included, max excluded
            size_type idx, rank;
            // invariant:  m_rank[end] >= i
            //             m_rank[begin] < i
            while (end-begin > 1) {
                idx  = (begin+end) >> 1; // idx in [0..m_rank.size()-1]
                rank = idx*bit_vector_type::block_size*t_k - m_v->m_rank[idx];
                if (rank >= i)
                    end = idx;
                else { // rank < i
                    begin = idx;
                }
            }
            //   (2) linear search between the samples
            rank = begin*bit_vector_type::block_size*t_k - m_v->m_rank[begin]; // now i>rank
            idx = begin * t_k; // initialize idx for select result
            if (m_v->m_rank[end] == m_v->m_rank[begin]) {  // only for select<0>
                return idx*bit_vector_type::block_size +  i-rank -1;
            }
            size_type btnrp = m_v->m_btnrp[ begin ];
            uint8_t bt = 0, s = 0; // temp variables for block_type and space for block type
            while (i > rank) {
                bt = m_v->m_bt[idx++];
                rank += (bit_vector_type::block_size-bt);
                btnrp += (s=bi_type::space_for_bt(bt));
            }
            rank -= (bit_vector_type::block_size-bt);
            uint32_t btnr = m_v->m_btnr.get_int(btnrp-s, s);
            return (idx-1) * bit_vector_type::block_size + bits::sel(~((uint64_t)bi_type::nr_to_bin(bt, btnr)), i-rank);
        }



    public:
        select_support_rrr(const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        //! Answers select queries
        size_type select(size_type i)const {
            return  t_b ? select1(i) : select0(i);
        }


        const size_type operator()(size_type i)const {
            return select(i);
        }

        const size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        select_support_rrr& operator=(const select_support_rrr& rs) {
            if (this != &rs) {
                set_vector(rs.m_v);
            }
            return *this;
        }

        void swap(select_support_rrr&) { }

        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type serialize(std::ostream&, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            structure_tree::add_size(child, 0);
            return 0;
        }
};

}// end namespace sdsl

#endif