This file is indexed.

/usr/include/sdsl/sd_vector.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/* sdsl - succinct data structures library
    Copyright (C) 2012-2014 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*!\file sd_vector.hpp
   \brief sd_vector.hpp contains the sdsl::sd_vector class, and
          classes which support rank and select for sd_vector.
   \author Simon Gog
*/
#ifndef INCLUDED_SDSL_SD_VECTOR
#define INCLUDED_SDSL_SD_VECTOR

#include "int_vector.hpp"
#include "select_support_mcl.hpp"
#include "util.hpp"
#include "iterators.hpp"

//! Namespace for the succinct data structure library
namespace sdsl
{

// forward declaration needed for friend declaration
template<uint8_t t_b          = 1,
         class t_hi_bit_vector= bit_vector,
         class t_select_1     = typename t_hi_bit_vector::select_1_type,
         class t_select_0     = typename t_hi_bit_vector::select_0_type>
class rank_support_sd;  // in sd_vector

// forward declaration needed for friend declaration
template<uint8_t t_b          = 1,
         class t_hi_bit_vector= bit_vector,
         class t_select_1     = typename t_hi_bit_vector::select_1_type,
         class t_select_0     = typename t_hi_bit_vector::select_0_type>
class select_support_sd;  // in sd_vector

//! A bit vector which compresses very sparse populated bit vectors by
// representing the positions of 1 by the Elias-Fano representation for non-decreasing sequences
/*!
 * \par Other implementations of this data structure:
 *  - the sdarray of Okanohara and Sadakane
 *  - Sebastiano Vigna implemented a elias_fano class in this sux library.
 *
 * \par References
 *  - P. Elias: ,,Efficient storage and retrieval by content and address of static files'',
 *              Journal of the ACM, 1974
 *  - R. Fano: ,,On the number of bits required to implement an associative memory''.
 *             Memorandum 61. Computer Structures Group, Project MAC, MIT, 1971
 *  - D. Okanohara, K. Sadakane: ,,Practical Entropy-Compressed Rank/Select Dictionary'',
 *             Proceedings of ALENEX 2007.
 *
 *  \tparam t_hi_bit_vector Type of the bitvector used for the unary decoded differences of
 *                          the high part of the positions of the 1s.
 *  \tparam t_select_1      Type of the select structure which is used to select ones in HI.
 *  \tparam t_select_0      Type of the select structure which is used to select zeros in HI.
 */
template<class t_hi_bit_vector = bit_vector,
         class t_select_1     = typename t_hi_bit_vector::select_1_type,
         class t_select_0     = typename t_hi_bit_vector::select_0_type>
class sd_vector
{
    public:
        typedef bit_vector::size_type                   size_type;
        typedef size_type                               value_type;
        typedef bit_vector::difference_type             difference_type;
        typedef random_access_const_iterator<sd_vector> iterator;
        typedef bv_tag                                  index_category;
        typedef t_select_0                              select_0_support_type;
        typedef t_select_1                              select_1_support_type;

        typedef rank_support_sd<0, t_hi_bit_vector, select_1_support_type, select_0_support_type> rank_0_type;
        typedef rank_support_sd<1, t_hi_bit_vector, select_1_support_type, select_0_support_type> rank_1_type;
        typedef select_support_sd<0, t_hi_bit_vector, select_1_support_type, select_0_support_type> select_0_type;
        typedef select_support_sd<1, t_hi_bit_vector, select_1_support_type, select_0_support_type> select_1_type;

        typedef t_hi_bit_vector hi_bit_vector_type;
    private:
        // we need this variables to represent the m ones of the original bit vector of size n
        size_type m_size = 0;  // length of the original bit vector
        uint8_t   m_wl   = 0;  // log n - log m, where n is the length of the original bit vector
        // and m is the number of ones in the bit vector, wl is the abbreviation
        // for ,,width (of) low (part)''

        int_vector<>          m_low;           // vector for the least significant bits of the positions of the m ones
        hi_bit_vector_type    m_high;          // bit vector that represents the most significant bit in permuted order
        select_1_support_type m_high_1_select; // select support for the ones in m_high
        select_0_support_type m_high_0_select; // select support for the zeros in m_high

        void copy(const sd_vector& v) {
            m_size = v.m_size;
            m_wl   = v.m_wl;
            m_low  = v.m_low;
            m_high = v.m_high;
            m_high_1_select = v.m_high_1_select;
            m_high_1_select.set_vector(&m_high);
            m_high_0_select = v.m_high_0_select;
            m_high_0_select.set_vector(&m_high);
        }

    public:
        const uint8_t&               wl            = m_wl;
        const hi_bit_vector_type&    high          = m_high;
        const int_vector<>&          low           = m_low;
        const select_1_support_type& high_1_select = m_high_1_select;
        const select_0_support_type& high_0_select = m_high_0_select;

        sd_vector() { }

        sd_vector(const sd_vector& sd) {
            copy(sd);
        }

        sd_vector(sd_vector&& sd) {
            *this = std::move(sd);
        }

        sd_vector(const bit_vector& bv) {
            m_size = bv.size();
            size_type m = util::cnt_one_bits(bv);
            uint8_t logm = bits::hi(m)+1;
            uint8_t logn = bits::hi(m_size)+1;
            if (logm == logn) {
                --logm;    // to ensure logn-logm > 0
            }
            m_wl    = logn - logm;
            m_low = int_vector<>(m, 0, m_wl);
            bit_vector high = bit_vector(m + (1ULL<<logm), 0); //
            const uint64_t* bvp = bv.data();
            for (size_type i=0, mm=0,last_high=0,highpos=0; i < (bv.size()+63)/64; ++i, ++bvp) {
                size_type position = 64*i;
                uint64_t  w = *bvp;
                while (w) {  // process bit_vector word by word
                    uint8_t offset = bits::lo(w);
                    w >>= offset;   // note:  w >>= (offset+1) can not be applied for offset=63!
                    position += offset;
                    if (position >= bv.size()) // check that we have not reached the end of the bitvector
                        break;
                    // (1) handle high part
                    size_type cur_high = position >> m_wl;
                    highpos += (cur_high - last_high);   // write cur_high-last_high 0s
                    last_high = cur_high;
                    // (2) handle low part
                    m_low[mm++] = position; // int_vector truncates the most significant logm bits
                    high[highpos++] = 1;     // write 1 for the entry
                    position += 1;
                    w >>= 1;
                }
            }
            util::assign(m_high, high);
            util::init_support(m_high_1_select, &m_high);
            util::init_support(m_high_0_select, &m_high);
        }

        //! Accessing the i-th element of the original bit_vector
        /*! \param i An index i with \f$ 0 \leq i < size()  \f$.
        *   \return The i-th bit of the original bit_vector
        *   \par Time complexity
        *           \f$ \Order{t_{select0} + n/m} \f$, where m equals the number of zeros
        *    \par Remark
         *         The time complexity can be easily improved to
        *            \f$\Order{t_{select0}+\log(n/m)}\f$
        *        by using binary search in the second step.
        */
        value_type operator[](size_type i)const {
            size_type high_val = (i >> (m_wl));
            size_type sel_high = m_high_0_select(high_val + 1);
            size_type rank_low = sel_high - high_val;
            if (0 == rank_low)
                return 0;
            size_type val_low = i & bits::lo_set[ m_wl ]; // extract the low m_wl = log n -log m bits
            --sel_high; --rank_low;
            while (m_high[sel_high] and m_low[rank_low] > val_low) {
                if (sel_high > 0) {
                    --sel_high; --rank_low;
                } else
                    return 0;
            }
            return m_high[sel_high] and m_low[rank_low] == val_low;
        }

        //! Get the integer value of the binary string of length len starting at position idx.
        /*! \param idx Starting index of the binary representation of the integer.
         *  \param len Length of the binary representation of the integer. Default value is 64.
         *  \returns The integer value of the binary string of length len starting at position idx.
         *
         *  \pre idx+len-1 in [0..size()-1]
         *  \pre len in [1..64]
         */
        uint64_t get_int(size_type idx, const uint8_t len=64) const {
            uint64_t i = idx+len-1;
            uint64_t high_val = (i >> (m_wl));
            uint64_t sel_high = m_high_0_select(high_val + 1);
            uint64_t rank_low = sel_high - high_val;
            if (0 == rank_low)
                return 0;
            size_type val_low = i & bits::lo_set[ m_wl ]; // extract the low m_wl = log n -log m bits
            --sel_high; --rank_low;
            while (m_high[sel_high] and m_low[rank_low] > val_low) {
                if (sel_high > 0) {
                    --sel_high; --rank_low;
                } else
                    return 0;
            }
            uint64_t res = 0;
            while (true) {
                while (!m_high[sel_high]) {
                    if (sel_high > 0 and(high_val << m_wl) >=idx) {
                        --sel_high; --high_val;
                    } else {
                        return res;
                    }
                }
                while (m_high[sel_high]) {
                    uint64_t val = (high_val << m_wl) + m_low[rank_low];
                    if (val >= idx) {
                        res |= 1ULL<<(val-idx);
                    } else {
                        return res;
                    }
                    if (sel_high > 0) {
                        --sel_high; --rank_low;
                    } else {
                        return res;
                    }
                }
            }
        }

        //! Swap method
        void swap(sd_vector& v) {
            if (this != &v) {
                std::swap(m_size, v.m_size);
                std::swap(m_wl, v.m_wl);
                m_low.swap(v.m_low);
                m_high.swap(v.m_high);
                util::swap_support(m_high_1_select, v.m_high_1_select, &m_high, &v.m_high);
                util::swap_support(m_high_0_select, v.m_high_0_select, &m_high, &v.m_high);
            }
        }

        //! Returns the size of the original bit vector.
        size_type size()const {
            return m_size;
        }

        sd_vector& operator=(const sd_vector& v) {
            if (this != &v) {
                copy(v);
            }
            return *this;
        }

        sd_vector& operator=(sd_vector&& v) {
            if (this != &v) {
                m_size = v.m_size;
                m_wl   = v.m_wl;
                m_low  = std::move(v.m_low);
                m_high = std::move(v.m_high);
                m_high_1_select = std::move(v.m_high_1_select);
                m_high_1_select.set_vector(&m_high);
                m_high_0_select = std::move(v.m_high_0_select);
                m_high_0_select.set_vector(&m_high);
            }
            return *this;
        }

        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += write_member(m_wl, out, child, "wl");
            written_bytes += m_low.serialize(out, child, "low");
            written_bytes += m_high.serialize(out, child, "high");
            written_bytes += m_high_1_select.serialize(out, child, "high_1_select");
            written_bytes += m_high_0_select.serialize(out, child, "high_0_select");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            read_member(m_wl, in);
            m_low.load(in);
            m_high.load(in);
            m_high_1_select.load(in, &m_high);
            m_high_0_select.load(in, &m_high);
        }

        iterator begin() const {
            return iterator(this, 0);
        }

        iterator end() const {
            return iterator(this, size());
        }
};

template<uint8_t t_b>
struct rank_support_sd_trait {
    typedef bit_vector::size_type size_type;
    static size_type adjust_rank(size_type r,size_type) {
        return r;
    }
};

template<>
struct rank_support_sd_trait<0> {
    typedef bit_vector::size_type size_type;
    static size_type adjust_rank(size_type r, size_type n) {
        return n - r;
    }
};

//! Rank data structure for sd_vector
/*! \tparam t_b             Bit pattern.
 *  \tparam t_hi_bit_vector Type of the bitvector used for the unary decoded differences of
 *                          the high part of the positions of the 1s.
 *  \tparam t_select_1      Type of the select structure which is used to select ones in HI.
 *  \tparam t_select_0      Type of the select structure which is used to select zeros in HI.
 */
template<uint8_t t_b, class t_hi_bit_vector, class t_select_1, class t_select_0>
class rank_support_sd
{
        static_assert(t_b == 1u or t_b == 0u , "rank_support_sd: bit pattern must be `0` or `1`");
    public:
        typedef bit_vector::size_type size_type;
        typedef sd_vector<t_hi_bit_vector, t_select_1, t_select_0> bit_vector_type;
        enum { bit_pat = t_b };
    private:
        const bit_vector_type* m_v;

    public:

        explicit rank_support_sd(const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type rank(size_type i)const {
            assert(m_v != nullptr);
            assert(i <= m_v->size());
            // split problem in two parts:
            // (1) find  >=
            size_type high_val = (i >> (m_v->wl));
            size_type sel_high = m_v->high_0_select(high_val + 1);
            size_type rank_low = sel_high - high_val; //
            if (0 == rank_low)
                return rank_support_sd_trait<t_b>::adjust_rank(0, i);
            size_type val_low = i & bits::lo_set[ m_v->wl ];
            // now since rank_low > 0 => sel_high > 0
            do {
                if (!sel_high)
                    return rank_support_sd_trait<t_b>::adjust_rank(0, i);
                --sel_high; --rank_low;
            } while (m_v->high[sel_high] and m_v->low[rank_low] >= val_low);
            return rank_support_sd_trait<t_b>::adjust_rank(rank_low+1, i);
        }

        size_type operator()(size_type i)const {
            return rank(i);
        }

        size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        rank_support_sd& operator=(const rank_support_sd& rs) {
            if (this != &rs) {
                set_vector(rs.m_v);
            }
            return *this;
        }

        void swap(rank_support_sd&) { }

        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            return serialize_empty_object(out, v, name, this);
        }
};

template<uint8_t t_b, class t_sd_vec>
struct select_support_sd_trait {
    typedef bit_vector::size_type size_type;
    static size_type select(size_type i, const t_sd_vec* v) {
        return v->low[i-1] +  // lower part of the number
               ((v->high_1_select(i) + 1 - i)  << (v->wl));  // upper part
        //^-number of 0 before the i-th 1-^    ^-shift by wl
    }
};

template<class t_sd_vec>
struct select_support_sd_trait<0, t_sd_vec> {
    typedef bit_vector::size_type size_type;
    static size_type select(size_type i, const t_sd_vec* v) {
        auto ones  = v->low.size();
        assert(0 < i and i <= v->size() - ones);
        size_type lb = 1, rb = ones+1;
        size_type r0 = 0;
        size_type pos = (size_type)-1;
        // rb exclusive
        // invariant: rank0(select_1(rb)) >= i
        while (lb < rb) {
            auto mid = lb + (rb-lb)/2;
            auto x = select_support_sd_trait<1, t_sd_vec>::select(mid, v);
            auto rank0 = x + 1 - mid;
            if (rank0 >= i) {
                rb = mid;
            } else {
                r0 = rank0;
                pos = x;
                lb = mid + 1;
            }
        }
        return pos + i - r0;
    }
};

//! Select data structure for sd_vector
/*! \tparam t_b             Bit pattern.
 *  \tparam t_hi_bit_vector Type of the bitvector used for the unary decoded differences of
 *                          the high part of the positions of the 1s.
 *  \tparam t_select_1      Type of the select structure which is used to select ones in HI.
 *  \tparam t_select_0      Type of the select structure which is used to select zeros in HI.
 */
template<uint8_t t_b, class t_hi_bit_vector, class t_select_1, class t_select_0>
class select_support_sd
{
    public:
        typedef bit_vector::size_type size_type;
        typedef sd_vector<t_hi_bit_vector, t_select_1, t_select_0> bit_vector_type;
        enum { bit_pat = t_b };

    private:
        const bit_vector_type* m_v;
    public:

        explicit select_support_sd(const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type select(size_type i)const {
            return select_support_sd_trait<t_b, bit_vector_type>::select(i, m_v);
        }

        size_type operator()(size_type i)const {
            return select(i);
        }

        size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        select_support_sd& operator=(const select_support_sd& ss) {
            if (this != &ss) {
                set_vector(ss.m_v);
            }
            return *this;
        }

        void swap(select_support_sd&) { }

        void load(std::istream&, const bit_vector_type* v=nullptr) {
            set_vector(v);
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            return serialize_empty_object(out, v, name, this);
        }
};


//! Select_0 data structure for sd_vector
/*! \tparam t_sd_vector sd_vector type
 *  \tparam t_rank_1    Rank support for high part of sd_vector
 */
template<typename t_sd_vector=sd_vector<>>
class select_0_support_sd
{
    public:
        typedef bit_vector::size_type size_type;
        typedef t_sd_vector           bit_vector_type;
        using rank_1 = typename t_sd_vector::rank_1_type;
        using sel0_type = typename t_sd_vector::select_0_type;
        typedef bit_vector           y_high_type;
        enum { bit_pat = 0 };

    private:
        const bit_vector_type* m_v;
        int_vector<>           m_pointer;
        int_vector<>           m_rank1;
    public:

        explicit select_0_support_sd(const bit_vector_type* v=nullptr) {
            set_vector(v);
            if (nullptr != m_v) {
                size_type rank_0 = 0; // rank0 in H
                const size_type bs = 1ULL << (m_v->wl);
                size_type z = 0;
                size_type rank1 = 0;// rank1 in H
                size_type zeros = m_v->size() - rank_1(m_v)(m_v->size()); // zeros in B
                m_pointer = int_vector<>(zeros/(64*bs)+1, 0, bits::hi(m_v->high.size()/64)+1);
                m_rank1   = int_vector<>(m_pointer.size(), 0, bits::hi(m_v->high.size())+1);
                uint64_t w=0;
                for (size_type i=0, sel0=1; i < m_v->high.size(); i+=64) {
                    size_type old_rank1 = rank1;
                    w = m_v->high.get_int(i, 64);
                    rank1 += bits::cnt(w);
                    rank_0 = (i+64)-rank1;
                    if (rank1 > 0 and (w>>63)&1) {
                        uint64_t pos = rank_0*bs + m_v->low[rank1-1]; // pos of last one (of previous block in B
                        z = pos + 1 - rank1;
                    } else {
                        z = rank_0*bs  - rank1;
                    }
                    while (sel0 <= z and sel0 <= zeros) {
                        m_pointer[(sel0-1)/(64*bs)] = i/64;
                        m_rank1[(sel0-1)/(64*bs)]   = old_rank1;
                        sel0 += 64*bs;
                    }
                }
            }
        }

        //! Returns the position of the i-th occurrence in the bit vector.
        size_type select(size_type i)const {
            const size_type bs = 1ULL << (m_v->wl);
            size_type j = m_pointer[(i-1)/(64*bs)]*64;// index into m_high
            size_type rank1 = m_rank1[(i-1)/(64*bs)]; // rank_1(j*bs*64) in B
            size_type pos = 0;
            size_type rank0 = 0;

            if (rank1 > 0 and (m_v->high[j-1])&1) {
                pos  = (j-rank1)*bs + m_v->low[rank1-1]; // starting position of current block
                rank0 = pos+1-rank1;
            } else {
                pos  = (j-rank1)*bs;// starting position of current block
                rank0 = pos-rank1;
            }
            uint64_t w = m_v->high.get_int(j, 64);
            do {
                uint64_t _rank1 = rank1 + bits::cnt(w);
                uint64_t _rank0 = 0;
                if (_rank1 > 0 and (w>>63)&1) {
                    pos = (j+64-_rank1)*bs + m_v->low[_rank1-1];
                    _rank0 = pos+1-_rank1;
                } else {
                    pos = (j+64-_rank1)*bs;
                    _rank0 = pos-_rank1;
                }
                if (_rank0 < i) {
                    j+=64;
                    w = m_v->high.get_int(j, 64);
                    rank1 = _rank1;
                } else {
                    break;
                }
            } while (true);
            // invariant i >zeros
            do {
                uint64_t _rank1 = rank1 + bits::lt_cnt[w&0xFFULL];
                uint64_t _rank0 = 0;
                if (_rank1 > 0 and (w>>7)&1) {
                    pos = (j+8-_rank1)*bs + m_v->low[_rank1-1];
                    _rank0 = pos+1-_rank1;
                } else {
                    pos = (j+8-_rank1)*bs;
                    _rank0 = pos-_rank1;
                }
                if (_rank0 < i) {
                    j+=8;
                    w >>= 8;
                    rank1 = _rank1;
                } else {
                    break;
                }
            } while (true);

            do {
                bool b = w&1ULL;
                w >>= 1; // zeros are shifted in
                ++j;
                if (0 == b) {
                    pos = (j-rank1)*bs;
                    size_type zeros = pos-rank1;
                    if (zeros >= i) {
                        pos = pos - (zeros-i) - 1;
                        break;
                    }
                } else {
                    pos = (j-1-rank1)*bs;
                    size_type one_pos = pos + m_v->low[rank1];
                    ++rank1;
                    size_type zeros = one_pos + 1 - rank1;
                    if (zeros >= i) {
                        pos = one_pos - (zeros-i) - 1;
                        break;
                    }
                }
                if (j%64==0) {
                    w = m_v->high.get_int(j,64);
                }
            } while (true);
            return pos;
        }

        size_type operator()(size_type i)const {
            return select(i);
        }

        size_type size()const {
            return m_v->size();
        }

        void set_vector(const bit_vector_type* v=nullptr) {
            m_v = v;
        }

        select_0_support_sd& operator=(const select_0_support_sd& ss) {
            if (this != &ss) {
                m_pointer = ss.m_pointer;
                m_rank1   = ss.m_rank1;
                set_vector(ss.m_v);
            }
            return *this;
        }

        void swap(select_0_support_sd& ss) {
            m_pointer.swap(ss.m_pointer);
            m_rank1.swap(ss.m_rank1);
        }

        void load(std::istream& in, const bit_vector_type* v=nullptr) {
            m_pointer.load(in);
            m_rank1.load(in);
            set_vector(v);
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_pointer.serialize(out, child, "pointer");
            written_bytes += m_rank1.serialize(out, child, "rank1");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

};



} // end namespace
#endif