This file is indexed.

/usr/include/SeqLib/BFC.h is in libseqlib-dev 1.1.1+dfsg-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#ifndef SEQLIB_BFC_H
#define SEQLIB_BFC_H

extern "C" {
  #include <fml.h>
  #include <fml/bfc.h>
}

#include "SeqLib/BamRecord.h"
#include "SeqLib/UnalignedSequence.h"

namespace SeqLib {

/** Class to perform error-correction using BFC algorithm
 *
 * BFC is designed and implemented by Heng Li (https://github.com/lh3/bfc). 
 * From Heng: It is a variant of the classical spectrum alignment algorithm introduced
 * by Pevzner et al (2001). It uses an exhaustive search to find a k-mer path 
 * through a read that minimizeds a heuristic objective function jointly considering
 * penalities on correction, quality and k-mer support.
 */
  class BFC {

  public:
    /** Construct a new BFC engine */
    BFC() {
      bfc_opt_init(&bfc_opt);
      ch = NULL;
      kmer = 0;
      flt_uniq = 0;
      n_seqs = 0;
      m_seqs = NULL;
      kcov = 0;
      tot_k = 0;
      sum_k = 0;
      tot_len = 0;
      m_seqs_size = 0;
    }

    ~BFC() {
      clear();
      if (ch)
	bfc_ch_destroy(ch);
    }

    /** Allocate a block of memory for the reads if the amount to enter is known 
     * @note This is not necessary, as reads will dynamically reallocate 
     */
    bool AllocateMemory(size_t n);

    /** Peform BFC error correction on the sequences stored in this object */
    bool ErrorCorrect();

    /** Train the error corrector using the reads stored in this object */
    bool Train();

    /** Add a sequence for either training or correction */
    bool AddSequence(const BamRecord& r);

    /** Add a sequence for either training or correction */
    bool AddSequence(const char* seq, const char* qual, const char* name);

    /** Set the k-mer size */
    void SetKmer(int k) { kmer = k; }

    /** Train error correction using sequences from aligned reads */
    void TrainCorrection(const BamRecordVector& brv);

    /** Train error correction from raw character strings */
    void TrainCorrection(const std::vector<char*>& v);

    /** Train and error correction on same reads */
    void TrainAndCorrect(const BamRecordVector& brv);

    /** Error correct a collection of reads */
    void ErrorCorrect(const BamRecordVector& brv);

    /** Error correct in place, modify sequence, and the clear memory from this object */
    void ErrorCorrectInPlace(BamRecordVector& brv);
    
    /** Error correct and add tag with the corrected sequence data, and the clear memory from this object 
     * @param brv Aligned reads to error correct
     * @param tag Tag to assign error corrected sequence to (eg KC)
     * @exception Throws an invalid_argument if tag is not length 2
     */
    void ErrorCorrectToTag(BamRecordVector& brv, const std::string& tag);
    
    /** Return the reads (error corrected if ran ErrorCorrect) */
    void GetSequences(UnalignedSequenceVector& v) const;

    /** Clear the stored reads */
    void clear();

    /** Filter reads with unique k-mers. Do after error correction */
    void FilterUnique();

    /** Return the calculated kcov */
    float GetKCov() const { return kcov; }

    /** Return the calculated kcov */
    int GetKMer() const { return kmer; }

    /** Return the number of sequences controlled by this */
    int NumSequences() const { return n_seqs; } 

  private:

    // the amount of memory allocated
    size_t m_seqs_size;

    void learn_correct();

    bfc_opt_t bfc_opt;

    // histogram of kmer occurences
    uint64_t hist[256];

    // diff histogram of kmers??
    uint64_t hist_high[64];

    uint64_t tot_len;

    uint64_t sum_k; // total valid kmer count (kmers above min_count) ? 

    // total number of kmers?
    uint64_t tot_k;

    //
    float kcov;

    // reads to correct in place
    fml_seq1_t * m_seqs;

    // number of sequeces
    size_t n_seqs;

    // fermi lite options
    fml_opt_t fml_opt;

    // vector of names
    std::vector<char*> m_names;

    // assign names, qualities and seq to m_seqs
    void allocate_sequences_from_reads(const BamRecordVector& brv);

    // assign names, qualities and seq to m_seqs
    void allocate_sequences_from_char(const std::vector<char*>& v);
    
    // do the actual read correction
    void correct_reads();

    // 0 turns off filter uniq
    int flt_uniq; // from fml_correct call
    
    int l_pre;

    // 0 is auto learn
    int kmer;

    // holds data after learning how to correct
    bfc_ch_t *ch;

    // holds data for actual error correction
    ec_step_t es;
  };

   }

#endif