/usr/include/shark/Data/CVDatasetTools.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | //===========================================================================
/*!
*
*
* \brief Tools for cross-validation
*
*
*
* \author O.Krause
* \date 2010-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_DATA_CVDATASETTOOLS_H
#define SHARK_DATA_CVDATASETTOOLS_H
#include <shark/Data/Dataset.h>
#include <shark/Rng/DiscreteUniform.h>
#include <algorithm>
//
#include <shark/Data/DataView.h>
#include <utility> //for std::pair
namespace shark {
template<class DatasetTypeT>
class CVFolds {
public:
typedef DatasetTypeT DatasetType;
typedef typename DatasetType::IndexSet IndexSet;
/// \brief Creates an empty set of folds.
CVFolds() {}
///\brief partitions set in validation folds indicated by the second argument.
///
/// The folds are given as the batch indices of the validation sets
CVFolds(
DatasetType const &set,
std::vector<IndexSet> const &validationIndizes
) : m_dataset(set),m_validationFolds(validationIndizes) {}
CVFolds(
DatasetType const &set,
std::vector<std::size_t> const &foldStart
) : m_dataset(set){
for (std::size_t partition = 0; partition != foldStart.size(); partition++) {
std::size_t partitionSize = (partition+1 == foldStart.size()) ? set.numberOfBatches() : foldStart[partition+1];
partitionSize -= foldStart[partition];
//create the set with the indices of the validation set of the current partition
//also update the starting element
IndexSet validationIndizes(partitionSize);
for (std::size_t batch = 0; batch != partitionSize; ++batch) {
validationIndizes[batch]=batch+foldStart[partition];
}
m_validationFolds.push_back(validationIndizes);
}
}
DatasetType training(std::size_t i) const {
SIZE_CHECK(i < size());
return indexedSubset(m_dataset, trainingFoldIndices(i));
}
DatasetType validation(std::size_t i) const {
SIZE_CHECK(i < size());
return indexedSubset(m_dataset,validationFoldIndices(i));
}
///\brief returns the indices that make up the i-th validation fold
IndexSet const &validationFoldIndices(std::size_t i)const {
SIZE_CHECK(i < size());
return m_validationFolds[i];
}
IndexSet trainingFoldIndices(std::size_t i)const {
SIZE_CHECK(i < size());
IndexSet trainingFold;
detail::complement(m_validationFolds[i], m_dataset.numberOfBatches(), trainingFold);
return trainingFold;
}
///\brief Returns the number of folds of the dataset.
std::size_t size()const {
return m_validationFolds.size();
}
//~ /// \brief Returns the overall number of elements in the partitioned dataset
//~ std::size_t numberOfElements() const {
//~ return m_foldElementStart[size()];
//~ }
//~ /// \brief Returns the overall number of elements in the i-th training fold
//~ std::size_t numberOfTrainingElements(std::size_t i) const {
//~ SIZE_CHECK(i < size());
//~ return m_datasetSize-m_validationFoldSizes[i];
//~ }
//~ /// \brief Returns the overall number of elements in the i-th valdiation fold
//~ std::size_t numberOfValidationElements(std::size_t i) const {
//~ SIZE_CHECK(i < size());
//~ return m_validationFoldSizes[i];
//~ }
/// \brief Returns the dataset underying the folds
DatasetType const& dataset()const{
return m_dataset;
}
/// \brief Returns the dataset underying the folds
DatasetType& dataset(){
return m_dataset;
}
private:
DatasetType m_dataset;
std::vector<IndexSet> m_validationFolds;
std::size_t m_datasetSize;
std::vector<std::size_t> m_validationFoldSizes;
};
/// auxiliary typedef for createCVSameSizeBalanced and createCVFullyIndexed, stores location index in the first and partition index in the second
typedef std::pair< std::vector<std::size_t> , std::vector<std::size_t> > RecreationIndices;
namespace detail {
///\brief Version of createCVSameSizeBalanced which works regardless of the label type
///
/// Instead of a class label to interpret, this class uses a membership vector for every
/// class which members[k][i] returns the positon of the i-th member of class k in the set.
template<class I, class L>
CVFolds<LabeledData<I,L> > createCVSameSizeBalanced(
LabeledData<I,L> &set,
std::size_t numberOfPartitions,
std::vector< std::vector<std::size_t> > members,
std::size_t batchSize,
RecreationIndices * cv_indices = NULL //if not NULL: the first vector stores location information, and
// the second the partition information. The i-th value of the
// first vector shows what the original position of the now i-th
// sample was. The i-th value of the second vector shows what
// partition that sample now belongs to.
) {
std::size_t numInputs = set.numberOfElements();
std::size_t numClasses = members.size();
//shuffle elements in members
DiscreteUniform< Rng::rng_type > uni(shark::Rng::globalRng) ;
for (std::size_t c = 0; c != numClasses; c++) {
std::random_shuffle(members[c].begin(), members[c].end(), uni);
}
//calculate number of elements per validation subset in the new to construct container
std::size_t nn = numInputs / numberOfPartitions;
std::size_t leftOver = numInputs % nn;
std::vector<std::size_t> validationSize(numberOfPartitions,nn);
for (std::size_t partition = 0; partition != leftOver; partition++) {
validationSize[partition]++;
}
//calculate the size of the batches for every validation part
std::vector<std::size_t> partitionStart;
std::vector<std::size_t> batchSizes;
std::size_t numBatches = batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);
LabeledData<I,L> newSet(numBatches);//set of empty batches
DataView<LabeledData<I,L> > setView(set);//fast access to single elements of the original set
std::vector<std::size_t> validationSetStart = partitionStart;//current index for the batch of every fold
//partition classes into the validation subsets of newSet
std::size_t fold = 0;//current fold
std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);
//initialize the list of position indices which can later be used to re-create the fold (via createCV(Fully)Indexed)
if ( cv_indices != NULL ) {
cv_indices->first.clear();
cv_indices->first.resize( numInputs );
cv_indices->second.clear();
cv_indices->second.resize( numInputs );
}
size_t j = 0; //for recreation indices
for (std::size_t c = 0; c != numClasses; c++) {
for (std::size_t i = 0; i != members[c].size(); i++) {
std::size_t oldPos = members[c][i];
std::size_t batchNumber = validationSetStart[fold];
batchElements[fold].push_back(oldPos);
if ( cv_indices != NULL ) {
cv_indices->first[ j ] = oldPos; //store the position in which the (now) i-th sample previously resided
cv_indices->second[ j ] = fold; //store the partition to which the (now) i-th sample gets assigned
// old: //(*cv_indices)[ oldPos ] = fold; //store in vector to recreate partition if desired
}
//if all elements for the current batch are found, create it
if (batchElements[fold].size() == batchSizes[batchNumber]) {
newSet.batch(validationSetStart[fold]) = subBatch(setView,batchElements[fold]);
batchElements[fold].clear();
++validationSetStart[fold];
}
fold = (fold+1) % numberOfPartitions;
j++;
}
}
SHARK_ASSERT( j == numInputs );
//swap old and new set
swap(set, newSet);
//create folds
return CVFolds<LabeledData<I,L> >(set,partitionStart);
}
}//namespace detail
/**
* \ingroup shark_globals
*
* @{
*/
//! \brief Create a partition for cross validation
//!
//! The subset each training examples belongs to
//! is drawn independently and uniformly distributed.
//! For every partition, all but one subset form the
//! training set, while the remaining one is used for
//! validation. The partitions can be accessed using
//! getCVPartitionName
//!
//! \param set the input data for which the new partitions are created
//! \param numberOfPartitions number of partitions to create
//! \param batchSize maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVIID(LabeledData<I,L> &set,
std::size_t numberOfPartitions,
std::size_t batchSize=Data<I>::DefaultBatchSize) {
std::vector<std::size_t> indices(set.numberOfElements());
for (std::size_t i=0; i != set.numberOfElements(); i++)
indices[i] = Rng::discrete(0, numberOfPartitions - 1);
return createCVIndexed(set,numberOfPartitions,indices,batchSize);
}
//! \brief Create a partition for cross validation
//!
//! Every subset contains (approximately) the same
//! number of elements. For every partition, all
//! but one subset form the training set, while the
//! remaining one is used for validation. The partitions
//! can be accessed using getCVPartitionName
//!
//! \param numberOfPartitions number of partitions to create
//! \param set the input data from which to draw the partitions
//! \param batchSize maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVSameSize(LabeledData<I,L> &set,std::size_t numberOfPartitions,std::size_t batchSize = LabeledData<I,L>::DefaultBatchSize) {
std::size_t numInputs = set.numberOfElements();
//calculate the number of validation examples for every partition
std::vector<std::size_t> validationSize(numberOfPartitions);
std::size_t inputsForValidation = numInputs / numberOfPartitions;
std::size_t leftOver = numInputs - inputsForValidation * numberOfPartitions;
for (std::size_t i = 0; i != numberOfPartitions; i++) {
std::size_t vs=inputsForValidation+(i<leftOver);
validationSize[i] =vs;
}
//calculate the size of batches for every validation part and their total number
std::vector<std::size_t> partitionStart;
std::vector<std::size_t> batchSizes;
detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);
set.repartition(batchSizes);
set.shuffle();
CVFolds<LabeledData<I,L> > folds(set,partitionStart);
return folds;//set;
}
//! \brief Create a partition for cross validation
//!
//! Every subset contains (approximately) the same
//! number of elements. For every partition, all
//! but one subset form the training set, while the
//! remaining one is used for validation.
//!
//! \param numberOfPartitions number of partitions to create
//! \param set the input data from which to draw the partitions
//! \param batchSize maximum batch size
//! \param cv_indices if not NULL [default]: for each element, store the fold it is assigned to; this can be used to later/externally recreate the fold via createCVIndexed
template<class I>
CVFolds<LabeledData<I,unsigned int> > createCVSameSizeBalanced (
LabeledData<I,unsigned int> &set,
std::size_t numberOfPartitions,
std::size_t batchSize=Data<I>::DefaultBatchSize,
RecreationIndices * cv_indices = NULL //if not NULL: for each element, store the fold it is assigned to; this can be used to later/externally recreate the fold via createCVIndexed
){
DataView<LabeledData<I,unsigned int> > setView(set);
std::size_t numInputs = setView.size();
std::size_t numClasses = numberOfClasses(set);
//find members of each class
std::vector< std::vector<std::size_t> > members(numClasses);
for (std::size_t i = 0; i != numInputs; i++) {
members[setView[i].label].push_back(i);
}
return detail::createCVSameSizeBalanced(set, numberOfPartitions, members, batchSize, cv_indices);
}
//! \brief Create a partition for cross validation without changing the dataset
//!
//! This method behaves similar to createCVIID
//! with the difference that batches are not reordered. Thus the batches
//! are only rearranged randomly in folds, but the dataset itself is not changed.
//!
//! \param numberOfPartitions number of partitions to create
//! \param set the input data from which to draw the partitions
template<class I, class L>
CVFolds<LabeledData<I,L> > createCVBatch (
LabeledData<I,L> const& set,
std::size_t numberOfPartitions
){
std::vector<std::size_t> indizes(set.numberOfBatches());
for(std::size_t i= 0; i != set.numberOfBatches(); ++i)
indizes[i] = i;
DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
shark::shuffle(indizes.begin(),indizes.end(), uni);
typedef typename LabeledData<I,L>::IndexSet IndexSet;
std::vector<IndexSet> folds;
std::size_t partitionSize = set.numberOfBatches()/numberOfPartitions;
std::size_t remainder = set.numberOfBatches() - partitionSize*numberOfPartitions;
std::vector<std::size_t>::iterator pos = indizes.begin();
for(std::size_t i = 0; i!= numberOfPartitions; ++i){
std::size_t size = partitionSize;
if(remainder> 0){
++size;
--remainder;
}
folds.push_back(IndexSet(pos,pos+size));
pos+=size;
}
return CVFolds<LabeledData<I,L> >(set,folds);
}
//! \brief Create a partition for cross validation from indices
//!
//! Create a partition from indices. The indices vector for each sample states of what
//! validation partition that sample should become a member. In other words, the index
//! maps a sample to a validation partition, meaning that it will become a part of the
//! training partition for all other folds.
//!
//! \param set partitions will be subsets of this set
//! \param numberOfPartitions number of partitions to create
//! \param indices partition indices of the examples in [0, ..., numberOfPartitions[.
//! \param batchSize maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVIndexed(
LabeledData<I,L> &set,
std::size_t numberOfPartitions,
std::vector<std::size_t> indices,
std::size_t batchSize=Data<I>::DefaultBatchSize
) {
std::size_t numInputs = set.numberOfElements();
SIZE_CHECK(indices.size() == numInputs);
SIZE_CHECK(numberOfPartitions == *std::max_element(indices.begin(),indices.end())+1);
//calculate the size of validation partitions
std::vector<std::size_t> validationSize(numberOfPartitions,0);
for (std::size_t input = 0; input != numInputs; input++) {
validationSize[indices[input]]++;
}
//calculate the size of batches for every validation part and their total number
std::vector<std::size_t> partitionStart;
std::vector<std::size_t> batchSizes;
std::size_t numBatches = detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);
//construct a new set with the correct batch format from the old set
LabeledData<I,L> newSet(numBatches);
DataView<LabeledData<I,L> > setView(set); //fast access to single elements of the original set
std::vector<std::size_t> validationSetStart = partitionStart; //current index for the batch of every partition
std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);
for (std::size_t input = 0; input != numInputs; input++) {
std::size_t partition = indices[input];
batchElements[partition].push_back(input);
//if all elements for the current batch are found, create it
std::size_t batchNumber = validationSetStart[partition];
if (batchElements[partition].size() == batchSizes[batchNumber]) {
newSet.batch(validationSetStart[partition]) = subBatch(setView,batchElements[partition]);
batchElements[partition].clear();
++validationSetStart[partition];
}
}
swap(set, newSet);
//now we only need to create the subset itself
return CVFolds<LabeledData<I,L> >(set,partitionStart);
}
//! \brief Create a partition for cross validation from indices for both ordering and partitioning.
//!
//! Create a partition from indices. There is one index vector assigning an order
//! to the samples, and another one assigning each sample to a validation partition.
//! That is, given a dataset set, and at the i-th processing step, this function puts
//! the order_indices[i]-th sample into the partition_indices[i]-th partition. The
//! order_indices part of the above procedure matters if both an inner and
//! outer partition are to be recreated: for the inner partition to be recreated, too,
//! the outer partition must be recreated in the same order, not just partitioned into
//! the same splits.
//!
//! \param set partitions will be subsets of this set
//! \param numberOfPartitions number of partitions to create
//! \param indices stores location index in the first and partition index in the second vector
//! \param batchSize maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVFullyIndexed(
LabeledData<I,L> &set,
std::size_t numberOfPartitions,
RecreationIndices indices,
std::size_t batchSize=Data<I>::DefaultBatchSize
) {
std::size_t numInputs = set.numberOfElements();
SIZE_CHECK(indices.first.size() == numInputs);
SIZE_CHECK(indices.second.size() == numInputs);
SIZE_CHECK(numberOfPartitions == *std::max_element(indices.second.begin(),indices.second.end())+1);
//calculate the size of validation partitions
std::vector<std::size_t> validationSize(numberOfPartitions,0);
for (std::size_t input = 0; input != numInputs; input++) {
validationSize[indices.second[input]]++;
}
//calculate the size of batches for every validation part and their total number
std::vector<std::size_t> partitionStart;
std::vector<std::size_t> batchSizes;
std::size_t numBatches = detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);
//construct a new set with the correct batch format from the old set
LabeledData<I,L> newSet(numBatches);
DataView<LabeledData<I,L> > setView(set); //fast access to single elements of the original set
std::vector<std::size_t> validationSetStart = partitionStart; //current index for the batch of every partition
std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);
for (std::size_t input = 0; input != numInputs; input++) {
std::size_t partition = indices.second[input]; //the second vector's contents indicate the partition to assign each sample to.
batchElements[partition].push_back( indices.first[input] ); //the first vector's contents indicate from what original position to get the next sample.
//if all elements for the current batch are found, create it
std::size_t batchNumber = validationSetStart[partition];
if (batchElements[partition].size() == batchSizes[batchNumber]) {
newSet.batch(validationSetStart[partition]) = subBatch(setView,batchElements[partition]);
batchElements[partition].clear();
++validationSetStart[partition];
}
}
swap(set, newSet);
//now we only need to create the subset itself
return CVFolds<LabeledData<I,L> >(set,partitionStart);
}
// much more to come...
/** @}*/
}
#include "Impl/CVDatasetTools.inl"
#endif
|