/usr/include/shark/Data/DataDistribution.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | //===========================================================================
/*!
*
*
* \brief Learning problems given by analytic distributions.
*
*
*
*
* \author T. Glasmachers
* \date 2006-2013
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_DATA_DATADISTRIBUTION_H
#define SHARK_DATA_DATADISTRIBUTION_H
#include <shark/Data/Dataset.h>
#include <shark/Rng/GlobalRng.h>
#include <shark/Statistics/Distributions/MultiVariateNormalDistribution.h>
#include <utility>
namespace shark {
///
/// \brief A DataDistribution defines an unsupervised learning problem.
///
/// \par
/// The unsupervised learning problem is defined by an explicit
/// distribution (in contrast to a finite dataset). The only
/// method we need is to draw a sample from the distribution.
///
template <class InputType>
class DataDistribution
{
public:
/// \brief Virtual destructor.
virtual ~DataDistribution() { }
/// \brief Generates a single pair of input and label.
///
/// @param input the generated input
virtual void draw(InputType& input) const = 0;
// \brief Interface for std::generate.
InputType operator() () {
InputType ret;
draw(ret);
return ret;
}
/// \brief Generates a data set with samples from from the distribution.
///
/// @param size the number of samples in the dataset
/// @param maximumBatchSize the maximum size of a batch
UnlabeledData<InputType> generateDataset(std::size_t size,std::size_t maximumBatchSize) const {
std::size_t batches = (size + maximumBatchSize - 1) / maximumBatchSize;
std::size_t optimalBatchSize = size / batches;
std::size_t remainder = size - batches * optimalBatchSize;
UnlabeledData<InputType> dataset(batches);
InputType input;
// now create and fill the batches, taking the remainder into account
for (std::size_t i=0; i<batches; ++i)
{
std::size_t batchsize = (i<remainder) ? optimalBatchSize + 1 : optimalBatchSize;
typename UnlabeledData<InputType>::batch_reference b = dataset.batch(i);
draw(input);
b = Batch<InputType>::createBatch(input, batchsize);
for (std::size_t j=0; j<batchsize; j++)
{
if (j != 0) draw(input);
shark::get(b, j) = input;
}
}
return dataset;
}
/// \brief Generates a data set with samples from from the distribution.
///
/// @param size the number of samples in the dataset
UnlabeledData<InputType> generateDataset(std::size_t size) const {
return generateDataset(size,Data<InputType>::DefaultBatchSize );
}
};
///
/// \brief A LabeledDataDistribution defines a supervised learning problem.
///
/// \par
/// The supervised learning problem is defined by an explicit
/// distribution (in contrast to a finite dataset). The only
/// method we need is to draw a sample from the distribution.
///
template <class InputType, class LabelType>
class LabeledDataDistribution
{
public:
/// \brief Virtual destructor.
virtual ~LabeledDataDistribution() { }
/// \brief Generates a single pair of input and label.
/// @param input the generated input
/// @param label the generated label
virtual void draw(InputType& input, LabelType& label) const = 0;
// \Brief Interface for std::generate.
std::pair<InputType,LabelType> operator() () {
std::pair<InputType,LabelType> ret;
draw(ret.first,ret.second);
return ret;
}
/// \brief Generates a dataset with samples from from the distribution.
///
/// @param size the number of samples in the dataset
/// @param maximumBatchSize the maximum size of a batch
LabeledData<InputType, LabelType> generateDataset(std::size_t size,std::size_t maximumBatchSize) const
{
// first determine the optimal number of batches and their sizes
std::size_t batches = (size + maximumBatchSize - 1) / maximumBatchSize;
std::size_t optimalBatchSize = size / batches;
std::size_t remainder = size - batches * optimalBatchSize;
LabeledData<InputType, LabelType> dataset(batches);
InputType input;
LabelType label;
DataPair<InputType, LabelType> pair(input, label);
// now create and fill the batches, taking the remainder into account
for (std::size_t i=0; i<batches; ++i)
{
std::size_t batchsize = (i<remainder) ? optimalBatchSize + 1 : optimalBatchSize;
typename LabeledData<InputType, LabelType>::batch_reference b = dataset.batch(i);
draw(input, label); pair.input = input; pair.label = label;
b = Batch<DataPair<InputType, LabelType> >::createBatch(pair, batchsize);
for (std::size_t j=0; j<batchsize; j++)
{
if (j != 0) draw(input, label);
shark::get(b, j).input = input;
shark::get(b, j).label = label;
}
}
return dataset;
}
/// \brief Generates a data set with samples from from the distribution.
///
/// @param size the number of samples in the dataset
LabeledData<InputType, LabelType> generateDataset(std::size_t size) const {
return generateDataset(size,LabeledData<InputType, LabelType>::DefaultBatchSize );
}
};
///
/// \brief "chess board" problem for binary classification
///
class Chessboard : public LabeledDataDistribution<RealVector, unsigned int>
{
public:
Chessboard(unsigned int size = 4, double noiselevel = 0.0)
{
m_size = size;
m_noiselevel = noiselevel;
}
void draw(RealVector& input, unsigned int& label)const{
input.resize(2);
unsigned int j, t = 0;
for (j = 0; j < 2; j++)
{
double v = Rng::uni(0.0, (double)m_size);
t += (int)floor(v);
input(j) = v;
}
label = (t & 1);
if (Rng::uni(0.0, 1.0) < m_noiselevel) label = 1 - label;
}
protected:
unsigned int m_size;
double m_noiselevel;
};
///
/// \brief Noisy sinc function: y = sin(x) / x + noise
///
class Wave : public LabeledDataDistribution<RealVector, RealVector>
{
public:
Wave(double stddev = 0.1, double range = 5.0){
m_stddev = stddev;
m_range = range;
}
void draw(RealVector& input, RealVector& label)const{
input.resize(1);
label.resize(1);
input(0) = Rng::uni(-m_range, m_range);
if(input(0) != 0)
label(0) = sin(input(0)) / input(0) + Rng::gauss(0.0, m_stddev);
else
label(0) = Rng::gauss(0.0, m_stddev);
}
protected:
double m_stddev;
double m_range;
};
/// "Pami Toy" problem for binary classification, as used in the article "Glasmachers
/// and C. Igel. Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple
/// Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010."
/// In summary, the first M dimensions are correlated to the labels, the last N dimensions
/// are not.
class PamiToy : public LabeledDataDistribution<RealVector, unsigned int>
{
public:
PamiToy(unsigned int size_useful = 5, unsigned int size_noise = 5, double noise_position = 0.0, double noise_variance = 1.0 )
: m_size( size_useful+size_noise ),
m_sizeUseful( size_useful ),
m_sizeNoise( size_noise ),
m_noisePos( noise_position) ,
m_noiseVar( noise_variance )
{ }
void draw(RealVector& input, unsigned int& label)const{
input.resize( m_size );
label = (unsigned int) Rng::discrete(0,1); //fix label first
double y2 = label - 0.5; //"clean" informative feature values
// now fill the informative features..
for ( unsigned int i=0; i<m_sizeUseful; i++ ) {
input(i) = y2 + Rng::gauss( m_noisePos, m_noiseVar );
}
// ..and the uninformative ones
for ( unsigned int i=m_sizeUseful; i<m_size; i++ ) {
input(i) = Rng::gauss( m_noisePos, m_noiseVar );
}
}
protected:
unsigned int m_size;
unsigned int m_sizeUseful;
unsigned int m_sizeNoise;
double m_noisePos;
double m_noiseVar;
};
/// This class randomly fills a (hyper-)square with data points. Points which
/// happen to be within a (hyper-)circle centered in the square of a certain
/// radius get a positive class label. Noise on the labels can be added.
class CircleInSquare : public LabeledDataDistribution<RealVector, unsigned int>
{
public:
CircleInSquare( unsigned int dimensions = 2, double noiselevel = 0.0, bool class_prob_equal = false )
: m_dimensions( dimensions ),
m_noiselevel( noiselevel ),
m_lowerLimit( -1 ),
m_upperLimit( 1 ),
m_centerpoint( 0 ),
m_inner_radius2( 0.5*0.5 ),
m_outer_radius2( 0.5*0.5 ),
m_equal_class_prob( class_prob_equal )
{ }
/// allow for arbitrary box limits
void setLimits( double lower_limit, double upper_limit, double inner_radius, double outer_radius )
{
RANGE_CHECK( lower_limit < upper_limit );
RANGE_CHECK( inner_radius <= outer_radius );
RANGE_CHECK( 2*outer_radius <= upper_limit-lower_limit );
m_lowerLimit = lower_limit;
m_upperLimit = upper_limit;
m_centerpoint = (upper_limit-lower_limit)/2.0;
m_inner_radius2 = inner_radius*inner_radius;
m_outer_radius2 = outer_radius*outer_radius;
}
void draw(RealVector& input, unsigned int& label)const
{
input.resize( m_dimensions );
double v, dist;
if ( m_equal_class_prob ) { //each class has equal probability - this implementation is brute-force and gorgeously inefficient :/
bool this_label = Rng::coinToss();
label = ( this_label ? 1 : 0 );
if ( Rng::uni(0.0, 1.0) < m_noiselevel )
label = 1 - label;
if ( this_label ) {
do {
dist = 0.0;
for ( unsigned int i=0; i<m_dimensions; i++ ) {
v = Rng::uni( m_lowerLimit, m_upperLimit );
input(i) = v;
dist += (v-m_centerpoint)*(v-m_centerpoint);
}
} while( dist > m_inner_radius2 );
}
else {
do {
dist = 0.0;
for ( unsigned int i=0; i<m_dimensions; i++ ) {
v = Rng::uni( m_lowerLimit, m_upperLimit );
input(i) = v;
dist += (v-m_centerpoint)*(v-m_centerpoint);
}
} while( dist < m_outer_radius2 );
}
}
else { //equal probability to be anywhere in the cube
do {
dist = 0.0;
for ( unsigned int i=0; i<m_dimensions; i++ ) {
v = Rng::uni( m_lowerLimit, m_upperLimit );
input(i) = v;
dist += (v-m_centerpoint)*(v-m_centerpoint);
}
label = ( dist < m_inner_radius2 ? 1 : 0 );
if ( Rng::uni(0.0, 1.0) < m_noiselevel )
label = 1 - label;
} while( dist > m_inner_radius2 && dist < m_outer_radius2 );
}
}
protected:
unsigned int m_dimensions;
double m_noiselevel;
double m_lowerLimit;
double m_upperLimit;
double m_centerpoint;
double m_inner_radius2;
double m_outer_radius2;
bool m_equal_class_prob; ///<if true, the probability to belong to either class is equal. if false, it is uniform over the cube.
};
// This class randomly fills a 4x4 square in the 2D-plane with data points.
// Points in the lower left diagonal half are negative, points in the
// upper right diagonal half are positive. But additionally, all points
// in a circle located in the lower right quadrant are positive, effectively
// bulging the decision boundary inward. Noise on the labels can be added.
class DiagonalWithCircle : public LabeledDataDistribution<RealVector, unsigned int>
{
public:
DiagonalWithCircle( double radius = 1.0, double noise = 0.0 )
: m_radius2( radius*radius ),
m_noiselevel( noise )
{ }
void draw(RealVector& input, unsigned int& label)const
{
input.resize( 2 );
double x,y;
x = Rng::uni( 0, 4 ); //zero is left
y = Rng::uni( 0, 4 ); //zero is bottom
// assign label according to position w.r.t. the diagonal
if ( x+y < 4 )
label = 1;
else
label = 0;
// but if in the circle (even above diagonal), assign positive label
if ( (3-x)*(3-x) + (1-y)*(1-y) < m_radius2 )
label = 1;
// add noise
if ( Rng::uni(0.0, 1.0) < m_noiselevel )
label = 1 - label;
input(0) = x;
input(1) = y;
}
protected:
double m_radius2;
double m_noiselevel;
};
/// \brief Generates a set of normally distributed points
class NormalDistributedPoints:public DataDistribution<RealVector>
{
public:
/// \brief Generates a simple distribution with
NormalDistributedPoints(std::size_t dim): m_offset(dim,0){
RealMatrix covariance(dim,dim,0);
diag(covariance) = blas::repeat(1.0,dim);
m_dist.setCovarianceMatrix(covariance);
}
NormalDistributedPoints(RealMatrix const& covariance, RealVector const& offset)
:m_dist(covariance), m_offset(offset){
SIZE_CHECK(offset.size() == covariance.size1());
}
void draw(RealVector& input) const{
input.resize(m_offset.size());
noalias(input) = m_offset;
noalias(input) += m_dist(Rng::globalRng).first;
}
private:
MultiVariateNormalDistributionCholesky m_dist;
RealVector m_offset;
};
/// \brief Given a set of images, draws a set of image patches of a given size
class ImagePatches:public DataDistribution<RealVector>{
public:
ImagePatches(
Data<RealVector> images,
std::size_t imageWidth, std::size_t imageHeight,
std::size_t patchWidth, std::size_t patchHeight
):m_images(images)
, m_imageWidth(imageWidth)
, m_imageHeight(imageHeight)
, m_patchWidth(patchWidth)
, m_patchHeight(patchHeight)
,m_numImages(m_images.numberOfElements()){}
void draw(RealVector& input) const{
//sample image
std::size_t imageNum = Rng::discrete(0,m_numImages-1);
Data<RealVector>::const_element_reference image = m_images.element(imageNum);
//draw the upper left corner of the image
std::size_t m_startX = Rng::discrete(0,m_imageWidth-m_patchWidth);
std::size_t m_startY = Rng::discrete(0,m_imageHeight-m_patchHeight);
//copy patch
input.resize(m_patchWidth * m_patchHeight);
std::size_t rowStart = m_startY * m_imageWidth + m_startX;
for (size_t y = 0; y < m_patchHeight; ++y){
for (size_t x = 0; x < m_patchWidth; ++x){
input(y * m_patchWidth + x) = image(rowStart+x);
}
rowStart += m_imageWidth;
}
}
private:
Data<RealVector> m_images;
std::size_t m_imageWidth;
std::size_t m_imageHeight;
std::size_t m_patchWidth;
std::size_t m_patchHeight;
std::size_t m_numImages;
};
}
#endif
|