/usr/include/shark/Data/Dataset.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | //===========================================================================
/*!
*
*
* \brief Data for (un-)supervised learning.
*
*
* \par
* This file provides containers for data used by the models, loss
* functions, and learning algorithms (trainers). The reason for
* dedicated containers of this type is that data often need to be
* split into subsets, such as training and test data, or folds in
* cross-validation. The containers in this file provide memory
* efficient mechanisms for managing and providing such subsets.
*
*
*
*
* \author O. Krause, T. Glasmachers
* \date 2010-2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_DATA_DATASET_H
#define SHARK_DATA_DATASET_H
#include <boost/foreach.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <shark/Core/Exception.h>
#include <shark/Core/OpenMP.h>
#include <shark/Core/utility/functional.h>
#include <shark/Rng/GlobalRng.h>
#include "Impl/Dataset.inl"
namespace shark {
///
/// \brief Data container.
///
/// The Data class is Shark's container for machine learning data.
/// This container (and its sub-classes) is used for input data,
/// labels, and model outputs.
///
/// \par
/// The Data container organizes the data it holds in batches.
/// This means, that it tries to find a good data representation for a whole
/// set of, for example 100 data points, at the same time. If the type of data it stores
/// is for example RealVector, the batches of this type are RealMatrices. This is good because most often
/// operations on the whole matrix are faster than operations on the separate vectors.
/// Nearly all operations of the set have to be interpreted in terms of the batch. Therefore the iterator interface will
/// give access to the batches but not to single elements. For this separate element_iterators and const_element_iterators
/// can be used.
///\par
/// There are a lot of these typedefs. The typical typedefs for containers like batch_type or iterator are chosen
/// as types for the batch interface. For accessing single elements, a different set of typedefs is in place. Thus instead of iterator
/// you must write element_iterator and instead of batch_type write element_type. Usually you should not use element_type except when
/// you want to actually copy the data. Instead use element_reference or const_element_reference. Note that these are proxy objects and not
/// actual references to element_type!
/// A short example for these typedefs:
///\code
///typedef Data<RealVector> Set;
/// Set data;
/// for(Set::element_iterator pos=data.elemBegin();pos!= data.elemEnd();++pos){
/// std::cout<<*pos<<" ";
/// Set::element_reference ref=*pos;
/// ref*=2;
/// std::cout<<*pos<<std::endl;
///}
///\endcode
///When you write C++11 code, this is of course much simpler:
///\code
/// Data<RealVector> data;
/// for(auto pos=data.elemBegin();pos!= data.elemEnd();++pos){
/// std::cout<<*pos<<" ";
/// auto ref=*pos;
/// ref*=2;
/// std::cout<<*pos<<std::endl;
///}
///\endcode
/// \par
/// Element wise accessing of elements is usually slower than accessing the batches. If possible, use direct batch access, or
/// at least use the iterator interface to iterate over all elements. Random access to single elements is linear time, so use it wisely.
/// Of course, when you want to use batches, you need to know the actual batch type. This depends on the actual type of the input.
/// here are the rules:
/// if the input is an arithmetic type like int or double, the result will be a vector of this
/// (i.e. double->RealVector or Int->IntVector).
/// For vectors the results are matrices as mentioned above. If the vector is sparse, so is the matrix.
/// And for everything else the batch type is just a std::vector of the type, so no optimization can be applied.
/// \par
/// When constructing the container the batchSize can be set. If it is not set by the user the default batchSize is chosen. A BatchSize of 0
/// corresponds to putting all data into a single batch. Beware that not only the data needs storage but also
/// the various models during computation. So the actual amount of space to compute a batch can greatly exceed the batch size.
///
/// An additional feature of the Data class is that it can be used to create lazy subsets. So the batches of a dataset
/// can be shared between various instances of the data class without additional memory overhead.
///
///
///\warning Be aware --especially for derived containers like LabeledData-- that the set does not enforce structural consistency.
/// When you change the structure of the data part for example by directly changing the size of the batches, the size of the labels is not
/// enforced to change accordingly. Also when creating subsets of a set changing the parent will change it's siblings and conversely. The programmer
/// needs to ensure structural integrity!
/// For example this is dangerous:
/// \code
/// void function(Data<unsigned int>& data){
/// Data<unsigned int> newData(...);
/// data=newData;
/// }
/// \endcode
/// When data was originally a labeledData object, and newData has a different batch structure than data, this will lead to structural inconsistencies.
/// When function is rewritten such that newData has the same structure as data, this code is perfectly fine. The best way to get around this problem is
/// by rewriting the code as:
/// \code
/// Data<unsigned int> function(){
/// Data<unsigned int> newData(...);
/// return newData;
/// }
/// \endcode
///\todo expand docu
template <class Type>
class Data : public ISerializable
{
protected:
typedef detail::SharedContainer<Type> Container;
typedef Data<Type> self_type;
Container m_data; ///< data
public:
/// \brief Defines the default batch size of the Container.
///
/// Zero means: unlimited
BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = 256);
typedef typename Container::BatchType batch_type;
typedef batch_type& batch_reference;
typedef batch_type const& const_batch_reference;
typedef Type element_type;
typedef typename Batch<element_type>::reference element_reference;
typedef typename Batch<element_type>::const_reference const_element_reference;
typedef std::vector<std::size_t> IndexSet;
template <class T> friend bool operator == (const Data<T>& op1, const Data<T>& op2);
template <class InputT, class LabelT> friend class LabeledData;
// RANGES
typedef boost::iterator_range<typename Container::element_iterator> element_range;
typedef boost::iterator_range<typename Container::const_element_iterator> const_element_range;
typedef boost::iterator_range<typename Container::iterator> batch_range;
typedef boost::iterator_range<typename Container::const_iterator> const_batch_range;
///\brief Returns the range of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_element_range elements()const{
return const_element_range(m_data.elemBegin(),m_data.elemEnd());
}
///\brief Returns therange of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
element_range elements(){
return element_range(m_data.elemBegin(),m_data.elemEnd());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_batch_range batches()const{
return const_batch_range(m_data.begin(),m_data.end());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
batch_range batches(){
return batch_range(m_data.begin(),m_data.end());
}
///\brief Returns the number of batches of the set.
std::size_t numberOfBatches() const{
return m_data.size();
}
///\brief Returns the total number of elements.
std::size_t numberOfElements() const{
return m_data.numberOfElements();
}
///\brief Check whether the set is empty.
bool empty() const{
return m_data.empty();
}
// ELEMENT ACCESS
element_reference element(std::size_t i){
return *(m_data.elemBegin()+i);
}
const_element_reference element(std::size_t i) const{
return *(m_data.elemBegin()+i);
}
// BATCH ACCESS
batch_reference batch(std::size_t i){
return *(m_data.begin()+i);
}
const_batch_reference batch(std::size_t i) const{
return *(m_data.begin()+i);
}
// CONSTRUCTORS
///\brief Constructor which constructs an empty set
Data(){ }
///\brief Construct a dataset with empty batches.
explicit Data(std::size_t numBatches) : m_data( numBatches )
{ }
///\brief Construct a dataset with different batch sizes as a copy of another dataset
explicit Data(Data const& container, std::vector<std::size_t> batchSizes)
: m_data( container.m_data, batchSizes, true )
{ }
///\brief Construction with size and a single element
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
explicit Data(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
: m_data(size,element,batchSize)
{ }
// MISC
void read(InArchive& archive){
archive >> m_data;
}
void write(OutArchive& archive) const{
archive << m_data;
}
///\brief This method makes the vector independent of all siblings and parents.
virtual void makeIndependent(){
m_data.makeIndependent();
}
// METHODS TO ALTER BATCH STRUCTURE
void splitBatch(std::size_t batch, std::size_t elementIndex){
m_data.splitBatch(m_data.begin()+batch,elementIndex);
}
///\brief Splits the container into two independent parts. The front part remains in the container, the back part is returned.
///
///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
///this to work.
self_type splice(std::size_t batch){
self_type right;
right.m_data=m_data.splice(m_data.begin()+batch);
return right;
}
/// \brief Appends the contents of another data object to the end
///
/// The batches are not copied but now referenced from both datasets. Thus changing the appended
/// dataset might change this one as well.
void append(self_type const& other){
m_data.append(other.m_data);
}
void push_back(const_batch_reference batch){
m_data.push_back(batch);
}
///\brief Reorders the batch structure in the container to that indicated by the batchSizes vector
///
///After the operation the container will contain batchSizes.size() batchs with the i-th batch having size batchSize[i].
///However the sum of all batch sizes must be equal to the current number of elements
template<class Range>
void repartition(Range const& batchSizes){
m_data.repartition(batchSizes);
}
/// \brief Creates a vector with the batch sizes of every batch.
///
/// This method can be used together with repartition to ensure
/// that two datasets have the same batch structure.
std::vector<std::size_t> getPartitioning()const{
return m_data.getPartitioning();
}
// SUBSETS
///\brief Fill in the subset defined by the list of indices.
void indexedSubset(IndexSet const& indices, self_type& subset) const{
subset.m_data=Container(m_data,indices);
}
///\brief Fill in the subset defined by the list of indices as well as its complement.
void indexedSubset(IndexSet const& indices, self_type& subset, self_type& complement) const{
IndexSet comp;
detail::complement(indices,m_data.size(),comp);
subset.m_data=Container(m_data,indices);
complement.m_data=Container(m_data,comp);
}
friend void swap(Data& a, Data& b){
swap(a.m_data,b.m_data);
}
};
/**
* \ingroup shark_globals
* @{
*/
/// Outstream of elements.
template<class T>
std::ostream &operator << (std::ostream &stream, const Data<T>& d) {
typedef typename Data<T>::const_element_reference reference;
typename Data<T>::const_element_range elements = d.elements();
BOOST_FOREACH(reference elem,elements)
stream << elem << "\n";
return stream;
}
/** @} */
/// \brief Data set for unsupervised learning.
///
/// The UnlabeledData class is basically a standard Data container
/// with the special interpretation of its data point being
/// "inputs" to a learning algorithm.
template <class InputT>
class UnlabeledData : public Data<InputT>
{
public:
typedef InputT element_type;
typedef Data<element_type> base_type;
typedef UnlabeledData<element_type> self_type;
typedef element_type InputType;
typedef detail::SharedContainer<InputT> InputContainer;
protected:
using base_type::m_data;
public:
///\brief Constructor.
UnlabeledData()
{ }
///\brief Construction from data.
UnlabeledData(Data<InputT> const& points)
: base_type(points)
{ }
///\brief Construction with size and a single element
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
UnlabeledData(std::size_t size, element_type const& element, std::size_t batchSize = base_type::DefaultBatchSize)
: base_type(size,element,batchSize)
{ }
///\brief Create an empty set with just the correct number of batches.
///
/// The user must initialize the dataset after that by himself.
UnlabeledData(std::size_t numBatches)
: base_type(numBatches)
{ }
///\brief Construct a dataset with different batch sizes. it is a copy of the other dataset
UnlabeledData(UnlabeledData const& container, std::vector<std::size_t> batchSizes)
:base_type(container,batchSizes){}
/// \brief we allow assignment from Data.
self_type operator=(Data<InputT> const& data){
static_cast<Data<InputT>& >(*this) = data;
return *this;
}
///\brief Access to the base_type class as "inputs".
///
/// Added for consistency with the LabeledData::labels() method.
self_type& inputs(){
return *this;
}
///\brief Access to the base_type class as "inputs".
///
/// Added for consistency with the LabeledData::labels() method.
self_type const& inputs() const{
return *this;
}
///\brief Splits the container in two independent parts. The left part remains in the container, the right is stored as return type
///
///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
///this to work.
self_type splice(std::size_t batch){
self_type right;
right.m_data=m_data.splice(m_data.begin()+batch);
return right;
}
///\brief shuffles all elements in the entire dataset (that is, also across the batches)
virtual void shuffle(){
DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
shark::shuffle(this->elements().begin(),this->elements().end(), uni);
}
};
///
/// \brief Data set for supervised learning.
///
/// The LabeledData class extends UnlabeledData for the
/// representation of inputs. In addition it holds and
/// provides access to the corresponding labels.
///
/// LabeledData tries to mimic the underlying data as pairs of input and label data.
/// this means that when accessing a batch by calling batch(i) or choosing one of the iterators
/// one access the input batch by batch(i).input and the labels by batch(i).label
///
///this also holds true for single element access using operator(). Be aware, that direct access to an element is
///a linear time operation. So it is not advisable to iterate over the elements, but instead iterate over the batches.
template <class InputT, class LabelT>
class LabeledData : public ISerializable
{
protected:
typedef LabeledData<InputT, LabelT> self_type;
public:
typedef InputT InputType;
typedef LabelT LabelType;
typedef UnlabeledData<InputT> InputContainer;
typedef Data<LabelT> LabelContainer;
typedef typename InputContainer::IndexSet IndexSet;
BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = InputContainer::DefaultBatchSize);
// TYPEDEFS fOR PAIRS
typedef DataBatchPair<
typename Batch<InputType>::type,
typename Batch<LabelType>::type
> batch_type;
typedef DataPair<
InputType,
LabelType
> element_type;
// TYPEDEFS FOR RANGES
typedef typename PairRangeType<
element_type,
typename InputContainer::element_range,
typename LabelContainer::element_range
>::type element_range;
typedef typename PairRangeType<
element_type,
typename InputContainer::const_element_range,
typename LabelContainer::const_element_range
>::type const_element_range;
typedef typename PairRangeType<
batch_type,
typename InputContainer::batch_range,
typename LabelContainer::batch_range
>::type batch_range;
typedef typename PairRangeType<
batch_type,
typename InputContainer::const_batch_range,
typename LabelContainer::const_batch_range
>::type const_batch_range;
// TYPEDEFS FOR REFERENCES
typedef typename boost::range_reference<batch_range>::type batch_reference;
typedef typename boost::range_reference<const_batch_range>::type const_batch_reference;
typedef typename boost::range_reference<element_range>::type element_reference;
typedef typename boost::range_reference<const_element_range>::type const_element_reference;
///\brief Returns the range of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_element_range elements()const{
return zipPairRange<element_type>(m_data.elements(),m_label.elements());
}
///\brief Returns therange of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
element_range elements(){
return zipPairRange<element_type>(m_data.elements(),m_label.elements());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_batch_range batches()const{
return zipPairRange<batch_type>(m_data.batches(),m_label.batches());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
batch_range batches(){
return zipPairRange<batch_type>(m_data.batches(),m_label.batches());
}
///\brief Returns the number of batches of the set.
std::size_t numberOfBatches() const{
return m_data.numberOfBatches();
}
///\brief Returns the total number of elements.
std::size_t numberOfElements() const{
return m_data.numberOfElements();
}
///\brief Check whether the set is empty.
bool empty() const{
return m_data.empty();
}
///\brief Access to inputs as a separate container.
InputContainer const& inputs() const{
return m_data;
}
///\brief Access to inputs as a separate container.
InputContainer& inputs(){
return m_data;
}
///\brief Access to labels as a separate container.
LabelContainer const& labels() const{
return m_label;
}
///\brief Access to labels as a separate container.
LabelContainer& labels(){
return m_label;
}
// CONSTRUCTORS
///\brief Empty data set.
LabeledData()
{}
///\brief Create an empty set with just the correct number of batches.
///
/// The user must initialize the dataset after that by himself.
LabeledData(std::size_t numBatches)
: m_data(numBatches),m_label(numBatches)
{}
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
LabeledData(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
: m_data(size,element.input,batchSize),
m_label(size,element.label,batchSize)
{}
///\brief Construction from data.
///
/// Beware that when calling this constructor the organization of batches must be equal in both
/// containers. This Constructor will not split the data!
LabeledData(Data<InputType> const& inputs, Data<LabelType> const& labels)
: m_data(inputs), m_label(labels)
{
SHARK_CHECK(inputs.numberOfElements() == labels.numberOfElements(), "[LabeledData::LabeledData] number of inputs and number of labels must agree");
#ifndef DNDEBUG
for(std::size_t i = 0; i != inputs.numberOfBatches(); ++i){
SIZE_CHECK(shark::size(inputs.batch(i))==shark::size(labels.batch(i)));
}
#endif
}
// ELEMENT ACCESS
element_reference element(std::size_t i){
return element_reference(m_data.element(i),m_label.element(i));
}
const_element_reference element(std::size_t i) const{
return const_element_reference(m_data.element(i),m_label.element(i));
}
// BATCH ACCESS
batch_reference batch(std::size_t i){
return batch_reference(m_data.batch(i),m_label.batch(i));
}
const_batch_reference batch(std::size_t i) const{
return const_batch_reference(m_data.batch(i),m_label.batch(i));
}
// MISC
/// from ISerializable
void read(InArchive& archive){
archive & m_data;
archive & m_label;
}
/// from ISerializable
void write(OutArchive& archive) const{
archive & m_data;
archive & m_label;
}
///\brief This method makes the vector independent of all siblings and parents.
virtual void makeIndependent(){
m_label.makeIndependent();
m_data.makeIndependent();
}
///\brief shuffles all elements in the entire dataset (that is, also across the batches)
virtual void shuffle(){
DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
shark::shuffle(this->elements().begin(),this->elements().end(), uni);
}
void splitBatch(std::size_t batch, std::size_t elementIndex){
m_data.splitBatch(batch,elementIndex);
m_label.splitBatch(batch,elementIndex);
}
///\brief Splits the container into two independent parts. The left part remains in the container, the right is stored as return type
///
///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
///this to work.
self_type splice(std::size_t batch){
return self_type(m_data.splice(batch),m_label.splice(batch));
}
/// \brief Appends the contents of another data object to the end
///
/// The batches are not copied but now referenced from both datasets. Thus changing the appended
/// dataset might change this one as well.
void append(self_type const& other){
m_data.append(other.m_data);
m_label.append(other.m_label);
}
void push_back(
typename Batch<InputType>::type const& inputs,
typename Batch<LabelType>::type const& labels
){
m_data.push_back(inputs);
m_label.push_back(labels);
}
void push_back(
const_batch_reference batch
){
push_back(batch.inputs,batch.labels);
}
///\brief Reorders the batch structure in the container to that indicated by the batchSizes vector
///
///After the operation the container will contain batchSizes.size() batches with the i-th batch having size batchSize[i].
///However the sum of all batch sizes must be equal to the current number of elements
template<class Range>
void repartition(Range const& batchSizes){
m_data.repartition(batchSizes);
m_label.repartition(batchSizes);
}
/// \brief Creates a vector with the batch sizes of every batch.
///
/// This method can be used together with repartition to ensure
/// that two datasets have the same batch structure.
std::vector<std::size_t> getPartitioning()const{
return m_data.getPartitioning();
}
friend void swap(LabeledData& a, LabeledData& b){
swap(a.m_data,b.m_data);
swap(a.m_label,b.m_label);
}
// SUBSETS
///\brief Fill in the subset defined by the list of indices.
void indexedSubset(IndexSet const& indices, self_type& subset) const{
m_data.indexedSubset(indices,subset.m_data);
m_label.indexedSubset(indices,subset.m_label);
}
///\brief Fill in the subset defined by the list of indices as well as its complement.
void indexedSubset(IndexSet const& indices, self_type& subset, self_type& complement)const{
IndexSet comp;
detail::complement(indices,m_data.numberOfBatches(),comp);
m_data.indexedSubset(indices,subset.m_data);
m_label.indexedSubset(indices,subset.m_label);
m_data.indexedSubset(comp,complement.m_data);
m_label.indexedSubset(comp,complement.m_label);
}
protected:
InputContainer m_data; /// point data
LabelContainer m_label; /// label data
};
/// specialized template for classification with unsigned int labels
typedef LabeledData<RealVector, unsigned int> ClassificationDataset;
/// specialized template for regression with RealVector labels
typedef LabeledData<RealVector, RealVector> RegressionDataset;
/// specialized template for classification with unsigned int labels and sparse data
typedef LabeledData<CompressedRealVector, unsigned int> CompressedClassificationDataset;
template<class Functor, class T>
struct TransformedData{
typedef Data<typename detail::TransformedDataElement<Functor,T>::type > type;
};
/**
* \addtogroup shark_globals
* @{
*/
/// \brief creates a data object from a range of elements
template<class Range>
Data<typename boost::range_value<Range>::type>
createDataFromRange(Range const& inputs, std::size_t maximumBatchSize = 0){
typedef typename boost::range_value<Range const>::type Input;
typedef typename boost::range_iterator<Range const>::type Iterator;
if (maximumBatchSize == 0)
maximumBatchSize = Data<Input>::DefaultBatchSize;
std::size_t numPoints = shark::size(inputs);
//first determine the optimal number of batches as well as batch size
std::size_t batches = numPoints / maximumBatchSize;
if(numPoints > batches*maximumBatchSize)
++batches;
std::size_t optimalBatchSize=numPoints/batches;
std::size_t remainder = numPoints-batches*optimalBatchSize;
Data<Input> data(batches);
//now create the batches taking the remainder into account
Iterator start= boost::begin(inputs);
for(std::size_t i = 0; i != batches; ++i){
std::size_t size = (i<remainder)?optimalBatchSize+1:optimalBatchSize;
Iterator end = start+size;
data.batch(i) = createBatch<Input>(
boost::make_iterator_range(start,end)
);
start = end;
}
return data;
}
/// \brief creates a data object from a range of elements
template<class Range>
UnlabeledData<typename boost::range_value<Range>::type>
createUnlabeledDataFromRange(Range const& inputs, std::size_t maximumBatchSize = 0){
return createDataFromRange(inputs,maximumBatchSize);
}
/// \brief creates a labeled data object from two ranges, representing inputs and labels
template<class Range1, class Range2>
LabeledData<
typename boost::range_value<Range1>::type,
typename boost::range_value<Range2>::type
> createLabeledDataFromRange(Range1 const& inputs, Range2 const& labels, std::size_t batchSize = 0){
SHARK_CHECK(boost::size(inputs) == boost::size(labels),
"[createDataFromRange] number of inputs and number of labels must agree");
typedef typename boost::range_value<Range1>::type Input;
typedef typename boost::range_value<Range2>::type Label;
if (batchSize == 0)
batchSize = LabeledData<Input,Label>::DefaultBatchSize;
return LabeledData<Input,Label>(
createDataFromRange(inputs,batchSize),
createDataFromRange(labels,batchSize)
);
}
///brief Outstream of elements for labeled data.
template<class T, class U>
std::ostream &operator << (std::ostream &stream, const LabeledData<T, U>& d) {
typedef typename LabeledData<T, U>::const_element_reference reference;
typename LabeledData<T, U>::const_element_range elements = d.elements();
BOOST_FOREACH(reference elem,elements)
stream << elem.input << " [" << elem.label <<"]"<< "\n";
return stream;
}
// FUNCTIONS FOR DIMENSIONALITY
///\brief Return the number of classes of a set of class labels with unsigned int label encoding
inline unsigned int numberOfClasses(Data<unsigned int> const& labels){
unsigned int classes = 0;
for(std::size_t i = 0; i != labels.numberOfBatches(); ++i){
classes = std::max(classes,*std::max_element(labels.batch(i).begin(),labels.batch(i).end()));
}
return classes+1;
}
///\brief Returns the number of members of each class in the dataset.
inline std::vector<std::size_t> classSizes(Data<unsigned int> const& labels){
std::vector<std::size_t> classCounts(numberOfClasses(labels),0u);
for(std::size_t i = 0; i != labels.numberOfBatches(); ++i){
std::size_t batchSize = size(labels.batch(i));
for(std::size_t j = 0; j != batchSize; ++j){
classCounts[labels.batch(i)(j)]++;
}
}
return classCounts;
}
///\brief Return the dimensionality of a dataset.
template <class InputType>
std::size_t dataDimension(Data<InputType> const& dataset){
SHARK_ASSERT(dataset.numberOfElements() > 0);
return dataset.element(0).size();
}
///\brief Return the input dimensionality of a labeled dataset.
template <class InputType, class LabelType>
std::size_t inputDimension(LabeledData<InputType, LabelType> const& dataset){
return dataDimension(dataset.inputs());
}
///\brief Return the label/output dimensionality of a labeled dataset.
template <class InputType, class LabelType>
std::size_t labelDimension(LabeledData<InputType, LabelType> const& dataset){
return dataDimension(dataset.labels());
}
///\brief Return the number of classes (highest label value +1) of a classification dataset with unsigned int label encoding
template <class InputType>
std::size_t numberOfClasses(LabeledData<InputType, unsigned int> const& dataset){
return numberOfClasses(dataset.labels());
}
///\brief Returns the number of members of each class in the dataset.
template<class InputType, class LabelType>
inline std::vector<std::size_t> classSizes(LabeledData<InputType, LabelType> const& dataset){
return classSizes(dataset.labels());
}
//subsetting
template<class DatasetT>
DatasetT indexedSubset(
DatasetT const& dataset,
typename DatasetT::IndexSet const& indices
){
DatasetT subset;
dataset.indexedSubset(indices,subset);
return subset;
}
///\brief Fill in the subset of batches [start,...,size+start[.
template<class DatasetT>
DatasetT rangeSubset(DatasetT const& dataset, std::size_t start, std::size_t end){
typename DatasetT::IndexSet indices;
detail::range(end-start, start, indices);
return indexedSubset(dataset,indices);
}
///\brief Fill in the subset of batches [0,...,size[.
template<class DatasetT>
DatasetT rangeSubset(DatasetT const& dataset, std::size_t size){
return rangeSubset(dataset,size,0);
}
// TRANSFORMATION
///\brief Transforms a dataset using a Functor f and returns the transformed result.
///
/// this version is used, when the Functor supports only element-by-element transformations
template<class T,class Functor>
typename boost::lazy_disable_if<
CanBeCalled<Functor,typename Data<T>::batch_type>,
TransformedData<Functor,T>
>::type
transform(Data<T> const& data, Functor f){
typedef typename detail::TransformedDataElement<Functor,T>::type ResultType;
int batches = (int) data.numberOfBatches();
Data<ResultType> result(batches);
SHARK_PARALLEL_FOR(int i = 0; i < batches; ++i)
result.batch(i)= createBatch<T>(boost::adaptors::transform(data.batch(i), f));
return result;
}
///\brief Transforms a dataset using a Functor f and returns the transformed result.
///
/// this version is used, when the Functor supports batch-by-batch transformations
template<class T,class Functor>
typename boost::lazy_enable_if<
CanBeCalled<Functor,typename Data<T>::batch_type>,
TransformedData<Functor,T>
>::type
transform(Data<T> const& data, Functor const& f){
typedef typename detail::TransformedDataElement<Functor,T>::type ResultType;
int batches = (int) data.numberOfBatches();
Data<ResultType> result(batches);
SHARK_PARALLEL_FOR(int i = 0; i < batches; ++i)
result.batch(i)= f(data.batch(i));
return result;
}
///\brief Transforms the inputs of a dataset and return the transformed result.
template<class I,class L, class Functor>
LabeledData<typename detail::TransformedDataElement<Functor,I >::type, L >
transformInputs(LabeledData<I,L> const& data, Functor const& f){
typedef LabeledData<typename detail::TransformedDataElement<Functor,I>::type,L > DatasetType;
return DatasetType(transform(data.inputs(),f),data.labels());
}
///\brief Transforms the labels of a dataset and returns the transformed result.
template<class I,class L, class Functor>
LabeledData<I,typename detail::TransformedDataElement<Functor,L >::type >
transformLabels(LabeledData<I,L> const& data, Functor const& f){
typedef LabeledData<I,typename detail::TransformedDataElement<Functor,L>::type > DatasetType;
return DatasetType(data.inputs(),transform(data.labels(),f));
}
///\brief Creates a copy o a dataset selecting only a certain set of features.
template<class FeatureSet>
Data<RealVector> selectFeatures(Data<RealVector> const& data,FeatureSet const& features){
return transform(data,detail::SelectFeatures<FeatureSet>(features));
}
template<class T, class FeatureSet>
LabeledData<RealVector,T> selectInputFeatures(LabeledData<RealVector,T> const& data,FeatureSet const& features){
return transformInputs(data, detail::SelectFeatures<FeatureSet>(features));
}
/// \brief Removes the last part of a given dataset and returns a new split containing the removed elements
///
/// For this operation, the dataset is not allowed to be shared.
/// \brief data The dataset which should be splited
/// \brief index the first element to be split
/// \returns the set which contains the splitd element (right part of the given set)
template<class DatasetT>
DatasetT splitAtElement(DatasetT& data, std::size_t elementIndex){
SIZE_CHECK(elementIndex<=data.numberOfElements());
std::size_t batchPos = 0;
std::size_t batchStart = 0;
while(batchStart + boost::size(data.batch(batchPos)) < elementIndex){
batchStart += boost::size(data.batch(batchPos));
++batchPos;
};
std::size_t splitPoint = elementIndex-batchStart;
if(splitPoint != 0){
data.splitBatch(batchPos,splitPoint);
++batchPos;
}
return data.splice(batchPos);
}
///\brief reorders the dataset such, that points are grouped by labels
///
/// The elements are not only reordered but the batches are also resized such, that every batch
/// only contains elements of one class. This method must be used in order to use binarySubproblem.
template<class I>
void repartitionByClass(LabeledData<I,unsigned int>& data,std::size_t batchSize = LabeledData<I,unsigned int>::DefaultBatchSize){
std::vector<std::size_t > classCounts = classSizes(data);
std::vector<std::size_t > partitioning;//new, optimal partitioning of the data according to the batch sizes
std::vector<std::size_t > classStart;//at which batch the elements of the class are starting
detail::batchPartitioning(classCounts, classStart, partitioning, batchSize);
data.repartition(partitioning);
// Now place examples into the batches reserved for their class...
// The following line does the job in principle but it crashes with clang on the mac:
// boost::sort(data.elements());//todo we are lying here, use bidirectional iterator sort.
// The following fixes the issue. As an aside it is even linear time:
std::vector<std::size_t> bat = classStart; // batch index until which the class is already filled in
std::vector<std::size_t> idx(classStart.size(), 0); // index within the batch until which the class is already filled in
unsigned int c = 0; // current class in whose batch space we operate
typedef typename Batch<I>::type InputBatchType;
typedef typename Batch<unsigned int>::type LabelBatchType;
for (std::size_t b=0; b<data.numberOfBatches(); b++)
{
// update class range index
std::size_t e = 0;
while (c + 1 < classStart.size() && b == classStart[c + 1])
{
c++;
b = bat[c];
e = idx[c];
}
if (b == data.numberOfBatches()) break;
InputBatchType& bi1 = data.inputs().batch(b);
LabelBatchType& bl1 = data.labels().batch(b);
while (true)
{
unsigned int l = shark::get(bl1, e);
if (l == c) // leave element in place
{
e++;
idx[c] = e;
if (e == boost::size(bl1))
{
e = 0;
idx[c] = 0;
bat[c]++;
break;
}
}
else // swap elements
{
InputBatchType& bi2 = data.inputs().batch(bat[l]);
LabelBatchType& bl2 = data.labels().batch(bat[l]);
swap(shark::get(bi1, e), shark::get(bi2, idx[l]));
shark::get(bl1, e) = shark::get(bl2, idx[l]);
shark::get(bl2, idx[l]) = l;
idx[l]++;
if (idx[l] == boost::size(bl2))
{
idx[l] = 0;
bat[l]++;
}
}
}
}
}
template<class I>
LabeledData<I,unsigned int> binarySubProblem(
LabeledData<I,unsigned int>const& data,
unsigned int zeroClass,
unsigned int oneClass
){
std::vector<std::size_t> indexSet;
std::size_t smaller = std::min(zeroClass,oneClass);
std::size_t bigger = std::max(zeroClass,oneClass);
std::size_t numBatches = data.numberOfBatches();
//find first class
std::size_t start= 0;
for(;start != numBatches && get(data.batch(start),0).label != smaller;++start);
SHARK_CHECK(start != numBatches, "[shark::binarySubProblem] class does not exist");
//copy batch indices of first class
for(;start != numBatches && get(data.batch(start),0).label == smaller; ++start)
indexSet.push_back(start);
//find second class
for(;start != numBatches && get(data.batch(start),0).label != bigger;++start);
SHARK_CHECK(start != numBatches, "[shark::binarySubProblem] class does not exist");
//copy batch indices of second class
for(;start != numBatches && get(data.batch(start),0).label == bigger; ++start)
indexSet.push_back(start);
return transformLabels(indexedSubset(data,indexSet), detail::TransformOneVersusRestLabels(oneClass));
}
/// \brief Construct a binary (two-class) one-versus-rest problem from a multi-class problem.
///
/// \par
/// The function returns a new LabeledData object. The input part
/// coincides with the multi-class data, but the label part is replaced
/// with binary labels 0 and 1. All instances of the given class
/// (parameter oneClass) get a label of one, all others are assigned a
/// label of zero.
template<class I>
LabeledData<I,unsigned int> oneVersusRestProblem(
LabeledData<I,unsigned int>const& data,
unsigned int oneClass)
{
return transformLabels(data, detail::TransformOneVersusRestLabels(oneClass));
}
///
///\brief Transformation function multiplying the elements in a dataset by a scalar or component-wise by values stores in a vector
///
class Multiply {
public:
///@param factor All components of all vectors in the dataset are multiplied by this number
Multiply(double factor) : m_factor(factor), m_scalar(true) {}
///@param factor For all elements in the dataset, the i-th component is multiplied with the i-th component of this vector
Multiply(const RealVector factor) : m_factor(0), m_factorv(factor), m_scalar(false) {}
typedef RealVector result_type;
RealVector operator()(RealVector input) const {
if(m_scalar) {
for(std::size_t i = 0; i != input.size(); ++i) input(i) *= m_factor;
return input;
} else {
SIZE_CHECK(m_factorv.size() == input.size());
for(std::size_t i = 0; i != input.size(); ++i) input(i) *= m_factorv(i);
return input;
}
}
private:
double m_factor;
RealVector m_factorv;
bool m_scalar;
};
///
///\brief Transformation function dividing the elements in a dataset by a scalar or component-wise by values stores in a vector
///
class Divide {
public:
///@param factor All components of all vectors in the dataset are divided by this number
Divide(double factor) : m_factor(factor), m_scalar(true) {}
///@param factor For all elements in the dataset, the i-th component is divided by the i-th component of this vector
Divide(const RealVector factor) : m_factor(0), m_factorv(factor), m_scalar(false) {}
typedef RealVector result_type;
RealVector operator()(RealVector input) const {
if(m_scalar) {
for(std::size_t i = 0; i != input.size(); ++i) input(i) /= m_factor;
return input;
} else {
SIZE_CHECK(m_factorv.size() == input.size());
for(std::size_t i = 0; i != input.size(); ++i) input(i) /= m_factorv(i);
return input;
}
}
private:
double m_factor;
RealVector m_factorv;
bool m_scalar;
};
///
///\brief Transformation function adding a vector or a scalar to the elements in a dataset
///
class Shift {
public:
///@param offset Scalar added to all components of all vectors in the dataset
Shift(double offset) : m_offset(offset), m_scalar(true) {}
///@param offset Vector added to vectors in the dataset
Shift(const RealVector offset) : m_offsetv(offset), m_scalar(false) {}
typedef RealVector result_type;
RealVector operator()(RealVector input) const {
if(m_scalar) {
for(std::size_t i = 0; i != input.size(); ++i)
input(i) += m_offset;
} else {
SIZE_CHECK(m_offsetv.size() == input.size());
for(std::size_t i = 0; i != input.size(); ++i)
input(i) += m_offsetv(i);
}
return input;
}
private:
double m_offset;
RealVector m_offsetv;
bool m_scalar;
};
///
///\brief Transformation function truncating elements in a dataset
///
class Truncate {
public:
///@param minValue All elements below this value are cut to the minimum value
///@param maxValue All elements above this value are cut to the maximum value
Truncate(double minValue,double maxValue) : m_min(minValue), m_max(maxValue){}
///@param minv Lower bound for element-wise truncation
///@param maxv Upper bound for element-wise truncation
Truncate(const RealVector minv, const RealVector maxv) : m_min(1), m_max(-1), m_minv(minv), m_maxv(maxv) { SIZE_CHECK(m_minv.size() == m_maxv.size()); }
typedef RealVector result_type;
RealVector operator()(RealVector input) const {
if(m_min < m_max) {
for(std::size_t i = 0; i != input.size(); ++i){
input(i) = std::max(m_min, std::min(m_max, input(i)));
}
} else {
SIZE_CHECK(m_minv.size() == input.size());
for(std::size_t i = 0; i != input.size(); ++i){
input(i) = std::max(m_minv(i), std::min(m_maxv(i), input(i)));
}
}
return input;
}
private:
double m_min;
double m_max;
RealVector m_minv;
RealVector m_maxv;
};
///
///\brief Transformation function first truncating and then rescaling elements in a dataset
///
class TruncateAndRescale {
public:
///@param minCutValue All elements below this value are cut to the minimum value
///@param maxCutValue All elements above this value are cut to the maximum value
///@param minValue The imterval [minCutValue, maxCutValue] is mapped to [minValue, maxValue]
///@param maxValue The imterval [minCutValue, maxCutValue] is mapped to [minValue, maxValue]
TruncateAndRescale(double minCutValue, double maxCutValue, double minValue = 0., double maxValue = 1.) : m_minCut(minCutValue), m_maxCut(maxCutValue), m_range(maxValue - minValue), m_min(minValue), m_scalar(true) {}
///@param minv Lower bound for element-wise truncation
///@param maxv Upper bound for element-wise truncation
///@param minValue The imterval [minv, maxv is mapped to [minValue, maxValue]
///@param maxValue The imterval [minv, maxv] is mapped to [minValue, maxValue]
TruncateAndRescale(const RealVector minv, const RealVector maxv, double minValue = 0., double maxValue = 1.) : m_minCutv(minv), m_maxCutv(maxv), m_range(maxValue - minValue), m_min(minValue), m_scalar(false) { SIZE_CHECK(m_minCutv.size() == m_maxCutv.size()); }
typedef RealVector result_type;
RealVector operator()(RealVector input) const {
if(m_scalar) {
for(std::size_t i = 0; i != input.size(); ++i){
input(i) = (std::max(m_minCut, std::min(m_maxCut, input(i))) - m_minCut) / (m_maxCut - m_minCut) * m_range + m_min;
}
} else {
SIZE_CHECK(m_minCutv.size() == input.size());
for(std::size_t i = 0; i != input.size(); ++i){
input(i) = (std::max(m_minCutv(i), std::min(m_maxCutv(i), input(i))) - m_minCutv(i)) / (m_maxCutv(i) - m_minCutv(i)) * m_range + m_min;
}
}
return input;
}
private:
double m_minCut;
double m_maxCut;
RealVector m_minCutv;
RealVector m_maxCutv;
double m_range; // maximum - minimum
double m_min;
bool m_scalar;
};
template <typename RowType> RowType getColumn(const Data<RowType> &data, std::size_t columnID) {
SHARK_ASSERT(dataDimension(data) > columnID);
RowType column(data.numberOfElements());
std::size_t rowCounter = 0;
BOOST_FOREACH(typename Data<RowType>::const_element_reference row, data.elements()){
column(rowCounter) = row(columnID);
rowCounter++;
}
return column;
}
template <typename RowType> void setColumn(Data<RowType> &data, std::size_t columnID, RowType newColumn) {
SHARK_ASSERT(dataDimension(data) > columnID);
SHARK_ASSERT(data.numberOfElements() == newColumn.size());
std::size_t rowCounter = 0;
BOOST_FOREACH(typename Data<RowType>::element_reference row, data.elements()){
row(columnID) = newColumn(rowCounter);
rowCounter++;
}
}
/** @*/
}
#endif
|