This file is indexed.

/usr/include/shark/Data/HDF5.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//===========================================================================
/*!
 * 
 *
 * \brief       Support for importing data from HDF5 file
 * 
 * 
 * \par
 * The most important application of the methods provided in this
 * file is the import of data from HDF5 files into Shark data
 * containers.
 * 
 * 
 * 
 *
 * \author      B. Li
 * \date        2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_DATA_HDF5_H
#define SHARK_DATA_HDF5_H

#include "shark/Core/utility/ScopedHandle.h"
#include "shark/Data/Dataset.h"

#include <hdf5.h> // This must come before #include <hdf5_hl.h>
#include <hdf5_hl.h>

#include <boost/array.hpp>
#include <boost/foreach.hpp>
#include <boost/range/algorithm/fill.hpp>
#include <boost/range/algorithm/max_element.hpp>
#include <boost/smart_ptr/scoped_array.hpp>
#include <boost/type_traits.hpp>

namespace shark {

namespace detail {

/// Overload functions so that complier is able to automatically detect which function to call
/// @note
///     Basically there are two ways to add support for other data types:
///     (a) Use other corresponding API H5HTpublic.h if the type is supported(luckily)
///     (b) Use H5LTread_dataset() but need pass in the type_id which are listed at:
///         http://www.hdfgroup.org/HDF5/doc/RM/PredefDTypes.html
///         Need pay special attention to endian.
///@{
herr_t readHDF5Dataset( hid_t loc_id, const char *dset_name, int *buffer )
{
	return H5LTread_dataset_int( loc_id, dset_name, buffer );
}

herr_t readHDF5Dataset( hid_t loc_id, const char *dset_name, long *buffer )
{
	return H5LTread_dataset_long( loc_id, dset_name, buffer );
}

herr_t readHDF5Dataset( hid_t loc_id, const char *dset_name, float *buffer )
{
	return H5LTread_dataset_float( loc_id, dset_name, buffer );
}

herr_t readHDF5Dataset( hid_t loc_id, const char *dset_name, double *buffer )
{
	return H5LTread_dataset_double( loc_id, dset_name, buffer );
}
///@}

/// Check whether typeClass and typeSize are supported by current implementation
template<typename RawValueType>
bool isSupported(H5T_class_t typeClass, size_t typeSize)
{
	if (H5T_FLOAT == typeClass && 8 == typeSize && boost::is_floating_point < RawValueType > ::value
	    && sizeof(RawValueType) == 8) {
		// double
		return true;
	} else if (H5T_FLOAT == typeClass && 4 == typeSize && boost::is_floating_point < RawValueType > ::value
	    && sizeof(RawValueType) == 4) {
		// float
		return true;
	} else if (H5T_INTEGER == typeClass && 4 == typeSize && boost::is_integral < RawValueType > ::value
	    && sizeof(RawValueType) == 4) {
		// int
		return true;
	} else if (H5T_INTEGER == typeClass && 8 == typeSize && boost::is_integral < RawValueType > ::value
	    && sizeof(RawValueType) == 8) {
		// long
		return true;
	}

	return false;
}

/// @brief Load a dataset in a HDF5 file into a matrix
///
/// @param data
///     in vector of vector format which should support assignment operations
/// @param fileName
///     The name of HDF5 file to be read from
/// @param dataSetName
///     the HDF5 dataset name to access in the HDF5 file
///
/// @tparam MatrixType
///     The type of data container which will accept read-in data and should be a 2-dimension matrix
template<typename MatrixType>
void loadIntoMatrix(MatrixType& data, const std::string& fileName, const std::string& dataSetName)
{
	typedef typename MatrixType::value_type VectorType; // e.g., std::vector<double>
	typedef typename VectorType::value_type RawValueType; // e.g., double

	// Disable HDF5 diagnosis message which could be commented out in case of debugging HDF5 related issues
	H5Eset_auto1(0, 0);

	// 64 is big enough for HDF5, which supports no more than 32 dimensions presently
	const size_t MAX_DIMENSIONS = 64u;

	// Open the file, and then get dimension
	hid_t open = H5Fopen(fileName.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
	if(open < 0)
		throw SHARKEXCEPTION((boost::format("[loadIntoMatrix] open file name: %1% (FAILED)") % fileName).str());
	
	const ScopedHandle<hid_t> fileId(
		open,
		H5Fclose
	);

	boost::array<hsize_t, MAX_DIMENSIONS> dims;
	dims.assign(0);
	H5T_class_t typeClass;
	size_t typeSize;
	THROW_IF(
		H5LTget_dataset_info(*fileId, dataSetName.c_str(), dims.c_array(), &typeClass, &typeSize) < 0,
		(boost::format("[importHDF5] Get data set(%1%) info from file(%2%).") % dataSetName % fileName).str());

	if (0 == dims[0])
		return;

	// Support 1 or 2 dimensions only at the moment
	THROW_IF(
		0 != dims[2],
		(boost::format(
			"[loadIntoMatrix][%1%][%2%] Support 1 or 2 dimensions, but this dataset has at least 3 dimensions.") % fileName % dataSetName).str());

	const hsize_t dim0 = dims[0];
	const hsize_t dim1 = (0 == dims[1]) ? 1 : dims[1]; // treat one dimension as two-dimension of N x 1

	THROW_IF(
		!detail::isSupported<RawValueType>(typeClass, typeSize),
		(boost::format(
			"[loadIntoMatrix] DataType doesn't match. HDF5 data type in dataset(%3%::%4%): %1%, size: %2%")
			% typeClass
			% typeSize
			% fileName
			% dataSetName).str());

	// Read data into a buffer
	const boost::scoped_array<RawValueType> dataBuffer(new RawValueType[dim0 * dim1]);
	THROW_IF(detail::readHDF5Dataset(*fileId, dataSetName.c_str(), dataBuffer.get()) < 0, "[loadIntoMatrix] Read data set.");

	// dims[0] = M, dims[1] = N, means each basic vector has M elements, and there are N of them.
	for (size_t i = 0; i < dim1; ++i) {
		VectorType sample(dim0);
		for (size_t j = 0; j < dim0; ++j)
			sample[j] = dataBuffer[i + j * dim1]; // elements in memory are in row-major order
		data.push_back(sample);
	}
}

/// @brief load a matrix from HDF5 file in compressed sparse column format
///
/// @param data the container which will hold the output matrix
/// @param fileName the name of HDF5 file
/// @param cscDatasetName dataset names for describing the CSC
template<typename MatrixType>
void loadHDF5Csc(MatrixType& data, const std::string& fileName, const std::vector<std::string>& cscDatasetName)
{
	typedef typename MatrixType::value_type VectorType; // e.g., std::vector<double>

	THROW_IF(
		3 != cscDatasetName.size(),
		"[importHDF5] Must provide 3 dataset names for importing Compressed Sparse Column format.");

	std::vector<VectorType> valBuf;
	std::vector<std::vector<boost::int32_t> > indicesBuf;
	std::vector<std::vector<boost::int32_t> > indexPtrBuf;
	detail::loadIntoMatrix(valBuf, fileName, cscDatasetName[0]);
	detail::loadIntoMatrix(indicesBuf, fileName, cscDatasetName[1]);
	detail::loadIntoMatrix(indexPtrBuf, fileName, cscDatasetName[2]);
	THROW_IF(1u != valBuf.size() || 1u != indicesBuf.size() || 1u != indexPtrBuf.size(), "All datasets should be of one dimension.");

	const VectorType& val = valBuf.front();
	const std::vector<boost::int32_t>& indices = indicesBuf.front(); // WARNING: Not all indices are of int32 type
	const std::vector<boost::int32_t>& indexPtr = indexPtrBuf.front();
	THROW_IF(val.size() != indices.size(), "Size of value and indices should be the same.");
	THROW_IF(indexPtr.back() != (boost::int32_t)val.size(), "Last element of index pointer should equal to size of value.");

	// Figure out dimensions of dense matrix
	const boost::uint32_t columnCount = indexPtr.size() - 1; // the last one is place holder
	const boost::uint32_t rowCount = *boost::max_element(indices) + 1; // max index plus 1

	data.resize(columnCount);
	boost::fill(data, VectorType(rowCount, 0)); // pre-fill zero

	size_t valIdx = 0;
	for (size_t i = 0; i < columnCount; ++i) {
		for (boost::int32_t j = indexPtr[i]; j < indexPtr[i + 1]; ++j) {
			data[i][indices[j]] = val[valIdx++];
		}
	}
}

/// @brief Construct labeled data from passed in data and label
///
/// @param labeledData
///     Container storing the loaded data
/// @param dataBuffer
///     The data container will hold
/// @param labelBuffer
///     The label for data inside @a dataBuffer
template<typename VectorType, typename LabelType>
void constructLabeledData(
	LabeledData<VectorType, LabelType>& labeledData,
	const std::vector<VectorType>& dataBuffer,
	const std::vector<std::vector<LabelType> >& labelBuffer)
{
	THROW_IF(
		1 != labelBuffer.size(),
		(boost::format("[importHDF5] Expect only one label vector, but get %1%.") % labelBuffer.size()).str());
	THROW_IF(
		dataBuffer.size() != labelBuffer.front().size(),
		boost::format("[importHDF5] Dimensions of data and label don't match.").str());

	labeledData = createLabeledDataFromRange(dataBuffer, labelBuffer.front());
}

} // namespace details

/// @brief Import data from a HDF5 file.
///
/// @param data        Container storing the loaded data
/// @param fileName    The name of HDF5 file to be read from
/// @param datasetName the HDF5 dataset name to access in the HDF5 file
///
/// @tparam VectorType   Type of object stored in Shark data container
template<typename VectorType>
void importHDF5(
	Data<VectorType>& data,
	const std::string& fileName,
	const std::string& datasetName)
{
	std::vector<VectorType> readinBuffer;
	detail::loadIntoMatrix(readinBuffer, fileName, datasetName);
	data = createDataFromRange(readinBuffer);
}

/// @brief Import data to a LabeledData object from a HDF5 file.
///
/// @param labeledData
///     Container storing the loaded data
/// @param fileName
///     The name of HDF5 file to be read from
/// @param data
///     the HDF5 dataset name for data
/// @param label
///     the HDF5 dataset name for label
///
/// @tparam VectorType
///     Type of object stored in Shark data container
/// @tparam LableType
///     Type of label
template<typename VectorType, typename LabelType>
void importHDF5(
	LabeledData<VectorType, LabelType>& labeledData,
	const std::string& fileName,
	const std::string& data,
	const std::string& label)
{
	std::vector<VectorType> readinData;
	std::vector < std::vector<LabelType> > readinLabel;

	detail::loadIntoMatrix(readinData, fileName, data);
	detail::loadIntoMatrix(readinLabel, fileName, label);
	detail::constructLabeledData(labeledData, readinData, readinLabel);
}

/// @brief Import data from HDF5 dataset of compressed sparse column format.
///
/// @param data        Container storing the loaded data
/// @param fileName    The name of HDF5 file to be read from
/// @param cscDatasetName
///     the CSC dataset names used to construct a matrix
///
/// @tparam VectorType   Type of object stored in Shark data container
template<typename VectorType>
void importHDF5(
	Data<VectorType>& data,
	const std::string& fileName,
	const std::vector<std::string>& cscDatasetName)
{
	std::vector<VectorType> readinBuffer;
	detail::loadHDF5Csc(readinBuffer, fileName, cscDatasetName);
	data = createDataFromRange(readinBuffer);
}

/// @brief Import data from HDF5 dataset of compressed sparse column format.
///
/// @param labeledData
///     Container storing the loaded data
/// @param fileName
///     The name of HDF5 file to be read from
/// @param cscDatasetName
///     the CSC dataset names used to construct a matrix
/// @param label
///     the HDF5 dataset name for label
///
/// @tparam VectorType
///     Type of object stored in Shark data container
/// @tparam LabelType
///     Type of label
template<typename VectorType, typename LabelType>
void importHDF5(
	LabeledData<VectorType, LabelType>& labeledData,
	const std::string& fileName,
	const std::vector<std::string>& cscDatasetName,
	const std::string& label)
{
	std::vector<VectorType> readinData;
	std::vector < std::vector<LabelType> > readinLabel;

	detail::loadHDF5Csc(readinData, fileName, cscDatasetName);
	detail::loadIntoMatrix(readinLabel, fileName, label);
	detail::constructLabeledData(labeledData, readinData, readinLabel);
}

} // namespace shark {

#endif // SHARK_DATA_HDF5_H