/usr/include/shark/Data/WeightedDataset.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | //===========================================================================
/*!
*
*
* \brief Weighted data sets for (un-)supervised learning.
*
*
* \par
* This file provides containers for data used by the models, loss
* functions, and learning algorithms (trainers). The reason for
* dedicated containers of this type is that data often need to be
* split into subsets, such as training and test data, or folds in
* cross-validation. The containers in this file provide memory
* efficient mechanisms for managing and providing such subsets.
* The speciality of these containers are that they are weighted.
*
*
*
* \author O. Krause
* \date 2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_DATA_WEIGHTED_DATASET_H
#define SHARK_DATA_WEIGHTED_DATASET_H
#include <shark/Data/Dataset.h>
namespace shark {
namespace detail{
template <class DataContainerT>
class BaseWeightedDataset : public ISerializable
{
private:
typedef BaseWeightedDataset<DataContainerT> self_type;
public:
typedef typename DataContainerT::element_type DataType;
typedef double WeightType;
typedef DataContainerT DataContainer;
typedef Data<WeightType> WeightContainer;
typedef typename DataContainer::IndexSet IndexSet;
// TYPEDEFS fOR PAIRS
typedef WeightedDataPair<
DataType,
WeightType
> element_type;
typedef typename Batch<element_type>::type batch_type;
// TYPEDEFS FOR RANGES
typedef typename PairRangeType<
element_type,
typename DataContainer::element_range,
typename WeightContainer::element_range
>::type element_range;
typedef typename PairRangeType<
element_type,
typename DataContainer::const_element_range,
typename WeightContainer::const_element_range
>::type const_element_range;
typedef typename PairRangeType<
batch_type,
typename DataContainer::batch_range,
typename WeightContainer::batch_range
>::type batch_range;
typedef typename PairRangeType<
batch_type,
typename DataContainer::const_batch_range,
typename WeightContainer::const_batch_range
>::type const_batch_range;
// TYPEDEFS FOR REFERENCES
typedef typename boost::range_reference<batch_range>::type batch_reference;
typedef typename boost::range_reference<const_batch_range>::type const_batch_reference;
typedef typename boost::range_reference<element_range>::type element_reference;
typedef typename boost::range_reference<const_element_range>::type const_element_reference;
///\brief Returns the range of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_element_range elements()const{
return zipPairRange<element_type>(m_data.elements(),m_weights.elements());
}
///\brief Returns therange of elements.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
element_range elements(){
return zipPairRange<element_type>(m_data.elements(),m_weights.elements());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
const_batch_range batches()const{
return zipPairRange<batch_type>(m_data.batches(),m_weights.batches());
}
///\brief Returns the range of batches.
///
///It is compatible to boost::range and STL and can be used whenever an algorithm requires
///element access via begin()/end() in which case data.elements() provides the correct interface
batch_range batches(){
return zipPairRange<batch_type>(m_data.batches(),m_weights.batches());
}
///\brief Returns the number of batches of the set.
std::size_t numberOfBatches() const{
return m_data.numberOfBatches();
}
///\brief Returns the total number of elements.
std::size_t numberOfElements() const{
return m_data.numberOfElements();
}
///\brief Check whether the set is empty.
bool empty() const{
return m_data.empty();
}
///\brief Access to the stored data points as a separate container.
DataContainer const& data() const{
return m_data;
}
///\brief Access to the stored data points as a separate container.
DataContainer& data(){
return m_data;
}
///\brief Access to weights as a separate container.
WeightContainer const& weights() const{
return m_weights;
}
///\brief Access to weights as a separate container.
WeightContainer& weights(){
return m_weights;
}
// CONSTRUCTORS
///\brief Constructs an Empty data set.
BaseWeightedDataset()
{}
///\brief Create an empty set with just the correct number of batches.
///
/// The user must initialize the dataset after that by himself.
BaseWeightedDataset(std::size_t numBatches)
: m_data(numBatches),m_weights(numBatches)
{}
/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
BaseWeightedDataset(std::size_t size, element_type const& element, std::size_t batchSize)
: m_data(size,element.data,batchSize)
, m_weights(size,element.weight,batchSize)
{}
///\brief Construction from data and a dataset rpresnting the weights
///
/// Beware that when calling this constructor the organization of batches must be equal in both
/// containers. This Constructor will not reorganize the data!
BaseWeightedDataset(DataContainer const& data, Data<WeightType> const& weights)
: m_data(data), m_weights(weights)
{
SHARK_CHECK(data.numberOfElements() == weights.numberOfElements(), "[ BaseWeightedDataset::WeightedUnlabeledData] number of data and number of weights must agree");
#ifndef DNDEBUG
for(std::size_t i = 0; i != data.numberOfBatches(); ++i){
SIZE_CHECK(shark::size(data.batch(i))==shark::size(weights.batch(i)));
}
#endif
}
///\brief Construction from data. All points get the same weight assigned
BaseWeightedDataset(DataContainer const& data, double weight)
: m_data(data), m_weights(data.numberOfBatches())
{
for(std::size_t i = 0; i != numberOfBatches(); ++i){
std::size_t batchSize = boost::size(m_data.batch(i));
m_weights.batch(i) = Batch<WeightType>::type(batchSize,weight);
}
}
// ELEMENT ACCESS
element_reference element(std::size_t i){
return element_reference(m_data.element(i),m_weights.element(i));
}
const_element_reference element(std::size_t i) const{
return const_element_reference(m_data.element(i),m_weights.element(i));
}
// BATCH ACCESS
batch_reference batch(std::size_t i){
return batch_reference(m_data.batch(i),m_weights.batch(i));
}
const_batch_reference batch(std::size_t i) const{
return const_batch_reference(m_data.batch(i),m_weights.batch(i));
}
// MISC
/// from ISerializable
void read(InArchive& archive){
archive & m_data;
archive & m_weights;
}
/// from ISerializable
void write(OutArchive& archive) const{
archive & m_data;
archive & m_weights;
}
///\brief This method makes the vector independent of all siblings and parents.
virtual void makeIndependent(){
m_weights.makeIndependent();
m_data.makeIndependent();
}
///\brief shuffles all elements in the entire dataset (that is, also across the batches)
virtual void shuffle(){
DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
shark::shuffle(this->elements().begin(),this->elements().end(), uni);
}
void splitBatch(std::size_t batch, std::size_t elementIndex){
m_data.splitBatch(batch,elementIndex);
m_weights.splitBatch(batch,elementIndex);
}
/// \brief Appends the contents of another data object to the end
///
/// The batches are not copied but now referenced from both datasets. Thus changing the appended
/// dataset might change this one as well.
void append(self_type const& other){
m_data.append(other.m_data);
m_weights.append(other.m_weights);
}
///\brief Reorders the batch structure in the container to that indicated by the batchSizes vector
///
///After the operation the container will contain batchSizes.size() batches with the i-th batch having size batchSize[i].
///However the sum of all batch sizes must be equal to the current number of elements
template<class Range>
void repartition(Range const& batchSizes){
m_data.repartition(batchSizes);
m_weights.repartition(batchSizes);
}
/// \brief Creates a vector with the batch sizes of every batch.
///
/// This method can be used together with repartition to ensure
/// that two datasets have the same batch structure.
std::vector<std::size_t> getPartitioning()const{
return m_data.getPartitioning();
}
friend void swap( self_type& a, self_type& b){
swap(a.m_data,b.m_data);
swap(a.m_weights,b.m_weights);
}
// SUBSETS
///\brief Fill in the subset defined by the list of indices.
void indexedSubset(IndexSet const& indices, self_type& subset) const{
m_data.indexedSubset(indices,subset.m_data);
m_weights.indexedSubset(indices,subset.m_weights);
}
///\brief Fill in the subset defined by the list of indices as well as its complement.
void indexedSubset(IndexSet const& indices, self_type& subset, self_type& complement)const{
IndexSet comp;
detail::complement(indices,m_data.numberOfBatches(),comp);
m_data.indexedSubset(indices,subset.m_data);
m_weights.indexedSubset(indices,subset.m_weights);
m_data.indexedSubset(comp,complement.m_data);
m_weights.indexedSubset(comp,complement.m_weights);
}
private:
DataContainer m_data; /// point data
WeightContainer m_weights; /// weight data
};
}
///
/// \brief Weighted data set for unsupervised learning
///
/// The WeightedUnlabeledData class extends UnlabeledData for the
/// representation of data. In addition it holds and provides access to the corresponding weights.
///
/// WeightedUnlabeledData tries to mimic the underlying data as pairs of data points and weights.
/// this means that when accessing a batch by calling batch(i) or choosing one of the iterators
/// one access the input batch by batch(i).data and the weights by batch(i).weight
///
///this also holds true for single element access using operator(). Be aware, that direct access to element is
///a linear time operation. So it is not advisable to iterate over the elements, but instead iterate over the batches.
template <class DataT>
class WeightedUnlabeledData : public detail::BaseWeightedDataset <UnlabeledData<DataT> >
{
private:
typedef WeightedUnlabeledData<DataT> self_type;
typedef detail::BaseWeightedDataset <UnlabeledData<DataT> > base_type;
public:
using base_type::data;
using base_type::weights;
typedef typename base_type::DataType DataType;
typedef typename base_type::WeightType WeightType;
typedef typename base_type::element_type element_type;
typedef DataT InputType;
BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = UnlabeledData<DataT>::DefaultBatchSize);
// CONSTRUCTORS
///\brief Empty data set.
WeightedUnlabeledData()
{}
///\brief Create an empty set with just the correct number of batches.
///
/// The user must initialize the dataset after that by himself.
WeightedUnlabeledData(std::size_t numBatches)
: base_type(numBatches)
{}
/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
WeightedUnlabeledData(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
: base_type(size,element,batchSize){}
///\brief Construction from data.
///
/// Beware that when calling this constructor the organization of batches must be equal in both
/// containers. This Constructor will not reorganize the data!
WeightedUnlabeledData(UnlabeledData<DataType> const& data, Data<WeightType> const& weights)
: base_type(data,weights)
{}
///\brief Construction from data and a constant weight for all elements
WeightedUnlabeledData(UnlabeledData<DataType> const& data, double weight)
: base_type(data,weight)
{}
//we additionally add the two below for compatibility with UnlabeledData
///\brief Access to the inputs as a separate container.
UnlabeledData<DataT> const& inputs() const{
return data();
}
///\brief Access to the inputs as a separate container.
UnlabeledData<DataT>& inputs(){
return data();
}
///\brief Splits the container into two independent parts. The left part remains in the container, the right is stored as return type
///
///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
///this to work.
self_type splice(std::size_t batch){
return self_type(data().splice(batch),weights().splice(batch));
}
friend void swap(WeightedUnlabeledData& a, WeightedUnlabeledData& b){
swap(static_cast<base_type&>(a),static_cast<base_type&>(b));
}
};
///brief Outstream of elements for weighted data.
template<class T>
std::ostream &operator << (std::ostream &stream, const WeightedUnlabeledData<T>& d) {
typedef typename WeightedUnlabeledData<T>::const_element_reference reference;
typename WeightedUnlabeledData<T>::const_element_range elements = d.elements();
BOOST_FOREACH(reference elem,elements)
stream << elem.weight << " [" << elem.data<<"]"<< "\n";
return stream;
}
/// \brief creates a weighted unweighted data object from two ranges, representing data and weights
template<class DataRange, class WeightRange>
typename boost::disable_if<
boost::is_arithmetic<WeightRange>,
WeightedUnlabeledData<
typename boost::range_value<DataRange>::type
>
>::type createUnlabeledDataFromRange(DataRange const& data, WeightRange const& weights, std::size_t batchSize = 0){
SHARK_CHECK(boost::size(data) == boost::size(weights),
"[createDataFromRange] number of data points and number of weights must agree");
typedef typename boost::range_value<DataRange>::type Data;
if (batchSize == 0)
batchSize = WeightedUnlabeledData<Data>::DefaultBatchSize;
return WeightedUnlabeledData<Data>(
shark::createUnlabeledDataFromRange(data,batchSize),
createDataFromRange(weights,batchSize)
);
}
///
/// \brief Weighted data set for supervised learning
///
/// The WeightedLabeledData class extends LabeledData for the
/// representation of data. In addition it holds and provides access to the corresponding weights.
///
/// WeightedLabeledData tries to mimic the underlying data as pairs of data tuples(input,label) and weights.
/// this means that when accessing a batch by calling batch(i) or choosing one of the iterators
/// one access the databatch by batch(i).data and the weights by batch(i).weight. to access the points and labels
/// use batch(i).data.input and batch(i).data.label
///
///this also holds true for single element access using operator(). Be aware, that direct access to element is
///a linear time operation. So it is not advisable to iterate over the elements, but instead iterate over the batches.
///
/// It is possible to gains everal views on the set. one can either get access to inputs, labels and weights separately
/// or gain access to the unweighted dataset of inputs and labels. Additionally the sets support on-the-fly creation
/// of the (inputs,weights) subset for unsupervised weighted learning
template <class InputT, class LabelT>
class WeightedLabeledData : public detail::BaseWeightedDataset <LabeledData<InputT,LabelT> >
{
private:
typedef WeightedLabeledData<InputT,LabelT> self_type;
typedef detail::BaseWeightedDataset <LabeledData<InputT,LabelT> > base_type;
public:
typedef typename base_type::DataType DataType;
typedef typename base_type::WeightType WeightType;
typedef InputT InputType;
typedef LabelT LabelType;
typedef typename base_type::element_type element_type;
using base_type::data;
using base_type::weights;
BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = (LabeledData<InputT,LabelT>::DefaultBatchSize));
// CONSTRUCTORS
///\brief Empty data set.
WeightedLabeledData()
{}
///\brief Create an empty set with just the correct number of batches.
///
/// The user must initialize the dataset after that by himself.
WeightedLabeledData(std::size_t numBatches)
: base_type(numBatches)
{}
/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
///
/// Optionally the desired batch Size can be set
///
///@param size the new size of the container
///@param element the blueprint element from which to create the Container
///@param batchSize the size of the batches. if this is 0, the size is unlimited
WeightedLabeledData(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
: base_type(size,element,batchSize){}
///\brief Construction from data.
///
/// Beware that when calling this constructor the organization of batches must be equal in both
/// containers. This Constructor will not reorganize the data!
WeightedLabeledData(LabeledData<InputType,LabelType> const& data, Data<WeightType> const& weights)
: base_type(data,weights)
{}
///\brief Construction from data and a constant weight for all elements
WeightedLabeledData(LabeledData<InputType,LabelType> const& data, double weight)
: base_type(data,weight)
{}
///\brief Access to the inputs as a separate container.
UnlabeledData<InputType> const& inputs() const{
return data().inputs();
}
///\brief Access to the inputs as a separate container.
UnlabeledData<InputType>& inputs(){
return data().inputs();
}
///\brief Access to the labels as a separate container.
Data<LabelType> const& labels() const{
return data().labels();
}
///\brief Access to the labels as a separate container.
Data<LabelType>& labels(){
return data().labels();
}
/// \brief Constructs an WeightedUnlabeledData object for the inputs.
WeightedUnlabeledData<InputType> weightedInputs() const{
return WeightedUnlabeledData<InputType>(data().inputs(),weights());
}
///\brief Splits the container into two independent parts. The left part remains in the container, the right is stored as return type
///
///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
///this to work.
self_type splice(std::size_t batch){
return self_type(data().splice(batch),weights().splice(batch));
}
friend void swap(self_type& a, self_type& b){
swap(static_cast<base_type&>(a),static_cast<base_type&>(b));
}
};
///brief Outstream of elements for weighted labeled data.
template<class T, class U>
std::ostream &operator << (std::ostream &stream, const WeightedLabeledData<T, U>& d) {
typedef typename WeightedLabeledData<T, U>::const_element_reference reference;
typename WeightedLabeledData<T, U>::const_element_range elements = d.elements();
BOOST_FOREACH(reference elem,elements)
stream << elem.weight <<" ("<< elem.data.label << " [" << elem.data.input<<"] )"<< "\n";
return stream;
}
//Stuff for Dimensionality and querying of basic information
template<class InputType>
double sumOfWeights(WeightedUnlabeledData<InputType> const& dataset){
double weightSum = 0;
for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
weightSum += sum(dataset.batch(i).weight);
}
return weightSum;
}
template<class InputType, class LabelType>
double sumOfWeights(WeightedLabeledData<InputType,LabelType> const& dataset){
double weightSum = 0;
for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
weightSum += sum(dataset.batch(i).weight);
}
return weightSum;
}
inline std::size_t numberOfClasses(WeightedUnlabeledData<unsigned int> const& labels){
return numberOfClasses(labels.data());
}
///\brief Returns the number of members of each class in the dataset.
inline std::vector<std::size_t> classSizes(WeightedUnlabeledData<unsigned int> const& labels){
return classSizes(labels.data());
}
///\brief Return the dimnsionality of points of a weighted dataset
template <class InputType>
std::size_t dataDimension(WeightedUnlabeledData<InputType> const& dataset){
return dataDimension(dataset.data());
}
///\brief Return the input dimensionality of a weighted labeled dataset.
template <class InputType, class LabelType>
std::size_t inputDimension(WeightedLabeledData<InputType, LabelType> const& dataset){
return dataDimension(dataset.inputs());
}
///\brief Return the label/output dimensionality of a labeled dataset.
template <class InputType, class LabelType>
std::size_t labelDimension(WeightedLabeledData<InputType, LabelType> const& dataset){
return dataDimension(dataset.labels());
}
///\brief Return the number of classes (highest label value +1) of a classification dataset with unsigned int label encoding
template <class InputType>
std::size_t numberOfClasses(WeightedLabeledData<InputType, unsigned int> const& dataset){
return numberOfClasses(dataset.labels());
}
///\brief Returns the number of members of each class in the dataset.
template<class InputType, class LabelType>
inline std::vector<std::size_t> classSizes(WeightedLabeledData<InputType, LabelType> const& dataset){
return classSizes(dataset.labels());
}
//creation of weighted datasets
/// \brief creates a weighted unweighted data object from two ranges, representing data and weights
template<class InputRange,class LabelRange, class WeightRange>
typename boost::disable_if<
boost::is_arithmetic<WeightRange>,
WeightedLabeledData<
typename boost::range_value<InputRange>::type,
typename boost::range_value<LabelRange>::type
>
>::type createLabeledDataFromRange(InputRange const& inputs, LabelRange const& labels, WeightRange const& weights, std::size_t batchSize = 0){
SHARK_CHECK(boost::size(inputs) == boost::size(labels),
"[createDataFromRange] number of data points and number of weights must agree");
SHARK_CHECK(boost::size(inputs) == boost::size(weights),
"[createDataFromRange] number of data points and number of weights must agree");
typedef typename boost::range_value<InputRange>::type InputType;
typedef typename boost::range_value<LabelRange>::type LabelType;
if (batchSize == 0)
batchSize = WeightedLabeledData<InputRange,LabelRange>::DefaultBatchSize;
return WeightedLabeledData<InputType,LabelType>(
createLabeledDataFromRange(inputs,labels,batchSize),
createDataFromRange(weights,batchSize)
);
}
/// \brief Creates a bootstrap partition of a labeled dataset and returns it using weighting.
///
/// Bootstrapping resamples the dataset by drawing a set of points with
/// replacement. Thus the sampled set will contain some points multiple times
/// and some points not at all. Bootstrapping is usefull to obtain unbiased
/// measurements of the mean and variance of an estimator.
///
/// Optionally the size of the bootstrap (that is, the number of sampled points)
/// can be set. By default it is 0, which indicates that it is the same size as the original dataset.
template<class InputType, class LabelType>
WeightedLabeledData< InputType, LabelType> bootstrap(
LabeledData<InputType,LabelType> const& dataset,
std::size_t bootStrapSize = 0
){
if(bootStrapSize == 0)
bootStrapSize = dataset.numberOfElements();
WeightedLabeledData<InputType,LabelType> bootstrapSet(dataset,0.0);
for(std::size_t i = 0; i != bootStrapSize; ++i){
std::size_t index = Rng::discrete(0,bootStrapSize-1);
bootstrapSet.element(index).weight += 1.0;
}
return bootstrapSet;
}
/// \brief Creates a bootstrap partition of an unlabeled dataset and returns it using weighting.
///
/// Bootstrapping resamples the dataset by drawing a set of points with
/// replacement. Thus the sampled set will contain some points multiple times
/// and some points not at all. Bootstrapping is usefull to obtain unbiased
/// measurements of the mean and variance of an estimator.
///
/// Optionally the size of the bootstrap (that is, the number of sampled points)
/// can be set. By default it is 0, which indicates that it is the same size as the original dataset.
template<class InputType>
WeightedUnlabeledData<InputType> bootstrap(
UnlabeledData<InputType> const& dataset,
std::size_t bootStrapSize = 0
){
if(bootStrapSize == 0)
bootStrapSize = dataset.numberOfElements();
WeightedUnlabeledData<InputType> bootstrapSet(dataset,0.0);
for(std::size_t i = 0; i != bootStrapSize; ++i){
std::size_t index = Rng::discrete(0,bootStrapSize-1);
bootstrapSet.element(index).weight += 1.0;
}
return bootstrapSet;
}
/** @*/
}
#endif
|