This file is indexed.

/usr/include/shark/Data/WeightedDataset.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//===========================================================================
/*!
 * 
 *
 * \brief       Weighted data sets for (un-)supervised learning.
 * 
 * 
 * \par
 * This file provides containers for data used by the models, loss
 * functions, and learning algorithms (trainers). The reason for
 * dedicated containers of this type is that data often need to be
 * split into subsets, such as training and test data, or folds in
 * cross-validation. The containers in this file provide memory
 * efficient mechanisms for managing and providing such subsets.
 * The speciality of these containers are that they are weighted.
 * 
 * 
 *
 * \author    O. Krause
 * \date       2014
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_DATA_WEIGHTED_DATASET_H
#define SHARK_DATA_WEIGHTED_DATASET_H

#include <shark/Data/Dataset.h>
namespace shark {
	
namespace detail{
template <class DataContainerT>
class BaseWeightedDataset : public ISerializable
{
private:
	typedef BaseWeightedDataset<DataContainerT> self_type;
public:
	typedef typename DataContainerT::element_type DataType;
	typedef double WeightType;
	typedef DataContainerT DataContainer;
	typedef Data<WeightType> WeightContainer;
	typedef typename DataContainer::IndexSet IndexSet;

	// TYPEDEFS fOR PAIRS
	typedef WeightedDataPair<
		DataType,
		WeightType
	> element_type;

	typedef typename Batch<element_type>::type batch_type;

	// TYPEDEFS FOR  RANGES
	typedef typename PairRangeType<
		element_type,
		typename DataContainer::element_range,
		typename WeightContainer::element_range
	>::type element_range;
	typedef typename PairRangeType<
		element_type,
		typename DataContainer::const_element_range,
		typename WeightContainer::const_element_range
	>::type const_element_range;
	typedef typename PairRangeType<
		batch_type,
		typename DataContainer::batch_range,
		typename WeightContainer::batch_range
	>::type batch_range;
	typedef typename PairRangeType<
		batch_type,
		typename DataContainer::const_batch_range,
		typename WeightContainer::const_batch_range
	>::type const_batch_range;

	// TYPEDEFS FOR REFERENCES
	typedef typename boost::range_reference<batch_range>::type batch_reference;
	typedef typename boost::range_reference<const_batch_range>::type const_batch_reference;
	typedef typename boost::range_reference<element_range>::type element_reference;
	typedef typename boost::range_reference<const_element_range>::type const_element_reference;

	///\brief Returns the range of elements.
	///
	///It is compatible to boost::range and STL and can be used whenever an algorithm requires
	///element access via begin()/end() in which case data.elements() provides the correct interface
	const_element_range elements()const{
		return zipPairRange<element_type>(m_data.elements(),m_weights.elements());
	}
	///\brief Returns therange of elements.
	///
	///It is compatible to boost::range and STL and can be used whenever an algorithm requires
	///element access via begin()/end() in which case data.elements() provides the correct interface
	element_range elements(){
		return zipPairRange<element_type>(m_data.elements(),m_weights.elements());
	}

	///\brief Returns the range of batches.
	///
	///It is compatible to boost::range and STL and can be used whenever an algorithm requires
	///element access via begin()/end() in which case data.elements() provides the correct interface
	const_batch_range batches()const{
		return zipPairRange<batch_type>(m_data.batches(),m_weights.batches());
	}
	///\brief Returns the range of batches.
	///
	///It is compatible to boost::range and STL and can be used whenever an algorithm requires
	///element access via begin()/end() in which case data.elements() provides the correct interface
	batch_range batches(){
		return zipPairRange<batch_type>(m_data.batches(),m_weights.batches());
	}

	///\brief Returns the number of batches of the set.
	std::size_t numberOfBatches() const{
		return m_data.numberOfBatches();
	}
	///\brief Returns the total number of elements.
	std::size_t numberOfElements() const{
		return m_data.numberOfElements();
	}

	///\brief Check whether the set is empty.
	bool empty() const{
		return m_data.empty();
	}

	///\brief Access to the stored data points as a separate container.
	DataContainer const& data() const{
		return m_data;
	}
	///\brief Access to the stored data points as a separate container.
	DataContainer& data(){
		return m_data;
	}

	///\brief Access to weights as a separate container.
	WeightContainer const& weights() const{
		return m_weights;
	}
	///\brief Access to weights as a separate container.
	WeightContainer& weights(){
		return m_weights;
	}

	// CONSTRUCTORS

	///\brief Constructs an Empty data set.
	BaseWeightedDataset()
	{}

	///\brief Create an empty set with just the correct number of batches.
	///
	/// The user must initialize the dataset after that by himself.
	BaseWeightedDataset(std::size_t numBatches)
	: m_data(numBatches),m_weights(numBatches)
	{}

	/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
	///
	/// Optionally the desired batch Size can be set
	///
	///@param size the new size of the container
	///@param element the blueprint element from which to create the Container
	///@param batchSize the size of the batches. if this is 0, the size is unlimited
	BaseWeightedDataset(std::size_t size, element_type const& element, std::size_t batchSize)
	: m_data(size,element.data,batchSize)
	, m_weights(size,element.weight,batchSize)
	{}

	///\brief Construction from data and a dataset rpresnting the weights
	///
	/// Beware that when calling this constructor the organization of batches must be equal in both
	/// containers. This Constructor will not reorganize the data!
	BaseWeightedDataset(DataContainer const& data, Data<WeightType> const& weights)
	: m_data(data), m_weights(weights)
	{
		SHARK_CHECK(data.numberOfElements() == weights.numberOfElements(), "[ BaseWeightedDataset::WeightedUnlabeledData] number of data and number of weights must agree");
#ifndef DNDEBUG
		for(std::size_t i  = 0; i != data.numberOfBatches(); ++i){
			SIZE_CHECK(shark::size(data.batch(i))==shark::size(weights.batch(i)));
		}
#endif
	}
	
	///\brief Construction from data. All points get the same weight assigned
	BaseWeightedDataset(DataContainer const& data, double weight)
	: m_data(data), m_weights(data.numberOfBatches())
	{
		for(std::size_t i = 0; i != numberOfBatches(); ++i){
			std::size_t batchSize = boost::size(m_data.batch(i));
			m_weights.batch(i) = Batch<WeightType>::type(batchSize,weight);
		}
	}
	
	
	// ELEMENT ACCESS
	element_reference element(std::size_t i){
		return element_reference(m_data.element(i),m_weights.element(i));
	}
	const_element_reference element(std::size_t i) const{
		return const_element_reference(m_data.element(i),m_weights.element(i));
	}

	// BATCH ACCESS
	batch_reference batch(std::size_t i){
		return batch_reference(m_data.batch(i),m_weights.batch(i));
	}
	const_batch_reference batch(std::size_t i) const{
		return const_batch_reference(m_data.batch(i),m_weights.batch(i));
	}

	// MISC

	/// from ISerializable
	void read(InArchive& archive){
		archive & m_data;
		archive & m_weights;
	}

	/// from ISerializable
	void write(OutArchive& archive) const{
		archive & m_data;
		archive & m_weights;
	}

	///\brief This method makes the vector independent of all siblings and parents.
	virtual void makeIndependent(){
		m_weights.makeIndependent();
		m_data.makeIndependent();
	}

	///\brief shuffles all elements in the entire dataset (that is, also across the batches)
	virtual void shuffle(){
		DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
		shark::shuffle(this->elements().begin(),this->elements().end(), uni);
	}

	void splitBatch(std::size_t batch, std::size_t elementIndex){
		m_data.splitBatch(batch,elementIndex);
		m_weights.splitBatch(batch,elementIndex);
	}

	/// \brief Appends the contents of another data object to the end
	///
	/// The batches are not copied but now referenced from both datasets. Thus changing the appended
	/// dataset might change this one as well.
	void append(self_type const& other){
		m_data.append(other.m_data);
		m_weights.append(other.m_weights);
	}


	///\brief Reorders the batch structure in the container to that indicated by the batchSizes vector
	///
	///After the operation the container will contain batchSizes.size() batches with the i-th batch having size batchSize[i].
	///However the sum of all batch sizes must be equal to the current number of elements
	template<class Range>
	void repartition(Range const& batchSizes){
		m_data.repartition(batchSizes);
		m_weights.repartition(batchSizes);
	}
	
	/// \brief Creates a vector with the batch sizes of every batch.
	///
	/// This method can be used together with repartition to ensure
	/// that two datasets have the same batch structure.
	std::vector<std::size_t> getPartitioning()const{
		return m_data.getPartitioning();
	}

	friend void swap( self_type& a, self_type& b){
		swap(a.m_data,b.m_data);
		swap(a.m_weights,b.m_weights);
	}


	// SUBSETS

	///\brief Fill in the subset defined by the list of indices.
	void indexedSubset(IndexSet const& indices, self_type& subset) const{
		m_data.indexedSubset(indices,subset.m_data);
		m_weights.indexedSubset(indices,subset.m_weights);
	}

	///\brief Fill in the subset defined by the list of indices as well as its complement.
	void indexedSubset(IndexSet const& indices, self_type& subset, self_type& complement)const{
		IndexSet comp;
		detail::complement(indices,m_data.numberOfBatches(),comp);
		m_data.indexedSubset(indices,subset.m_data);
		m_weights.indexedSubset(indices,subset.m_weights);
		m_data.indexedSubset(comp,complement.m_data);
		m_weights.indexedSubset(comp,complement.m_weights);
	}
private:
	DataContainer m_data;               /// point data
	WeightContainer m_weights; /// weight data
};

}

///
/// \brief Weighted data set for unsupervised learning
///
/// The WeightedUnlabeledData class extends UnlabeledData for the
/// representation of data. In addition it holds and provides access to the corresponding weights.
///
/// WeightedUnlabeledData tries to mimic the underlying data as pairs of data points and weights.
/// this means that when accessing a batch by calling batch(i) or choosing one of the iterators
/// one access the input batch by batch(i).data and the weights by batch(i).weight
///
///this also holds true for single element access using operator(). Be aware, that direct access to element is
///a linear time operation. So it is not advisable to iterate over the elements, but instead iterate over the batches.
template <class DataT>
class WeightedUnlabeledData : public detail::BaseWeightedDataset <UnlabeledData<DataT> >
{
private:
	typedef WeightedUnlabeledData<DataT> self_type;
	typedef detail::BaseWeightedDataset <UnlabeledData<DataT> > base_type;
public:
	using base_type::data;
	using base_type::weights;
	typedef typename base_type::DataType DataType;
	typedef typename base_type::WeightType WeightType;
	typedef typename base_type::element_type element_type;
	typedef DataT InputType;

	BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = UnlabeledData<DataT>::DefaultBatchSize);

	// CONSTRUCTORS

	///\brief Empty data set.
	WeightedUnlabeledData()
	{}

	///\brief Create an empty set with just the correct number of batches.
	///
	/// The user must initialize the dataset after that by himself.
	WeightedUnlabeledData(std::size_t numBatches)
	: base_type(numBatches)
	{}

	/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
	///
	/// Optionally the desired batch Size can be set
	///
	///@param size the new size of the container
	///@param element the blueprint element from which to create the Container
	///@param batchSize the size of the batches. if this is 0, the size is unlimited
	WeightedUnlabeledData(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
	: base_type(size,element,batchSize){}

	///\brief Construction from data.
	///
	/// Beware that when calling this constructor the organization of batches must be equal in both
	/// containers. This Constructor will not reorganize the data!
	WeightedUnlabeledData(UnlabeledData<DataType> const& data, Data<WeightType> const& weights)
	: base_type(data,weights)
	{}
		
	///\brief Construction from data and a constant weight for all elements
	WeightedUnlabeledData(UnlabeledData<DataType> const& data, double weight)
	: base_type(data,weight)
	{}
		
	//we additionally add the two below for compatibility with UnlabeledData
		
	///\brief Access to the inputs as a separate container.
	UnlabeledData<DataT> const& inputs() const{
		return data();
	}
	///\brief Access to the inputs as a separate container.
	UnlabeledData<DataT>& inputs(){
		return data();
	}

	///\brief Splits the container into two independent parts. The left part remains in the container, the right is stored as return type
	///
	///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
	///this to work.
	self_type splice(std::size_t batch){
		return self_type(data().splice(batch),weights().splice(batch));
	}

	friend void swap(WeightedUnlabeledData& a, WeightedUnlabeledData& b){
		swap(static_cast<base_type&>(a),static_cast<base_type&>(b));
	}
};

///brief  Outstream of elements for weighted data.
template<class T>
std::ostream &operator << (std::ostream &stream, const WeightedUnlabeledData<T>& d) {
	typedef typename WeightedUnlabeledData<T>::const_element_reference reference;
	typename WeightedUnlabeledData<T>::const_element_range elements = d.elements();
	BOOST_FOREACH(reference elem,elements)
		stream << elem.weight << " [" << elem.data<<"]"<< "\n";
	return stream;
}

/// \brief creates a weighted unweighted data object from two ranges, representing data and weights
template<class DataRange, class WeightRange>
typename boost::disable_if<
	boost::is_arithmetic<WeightRange>,
	WeightedUnlabeledData<
		typename boost::range_value<DataRange>::type
	> 
>::type createUnlabeledDataFromRange(DataRange const& data, WeightRange const& weights, std::size_t batchSize = 0){
	SHARK_CHECK(boost::size(data) == boost::size(weights),
	"[createDataFromRange] number of data points and number of weights must agree");
	typedef typename boost::range_value<DataRange>::type Data;

	if (batchSize == 0)
		batchSize = WeightedUnlabeledData<Data>::DefaultBatchSize;

	return WeightedUnlabeledData<Data>(
		shark::createUnlabeledDataFromRange(data,batchSize),
		createDataFromRange(weights,batchSize)
	);
}


///
/// \brief Weighted data set for supervised learning
///
/// The WeightedLabeledData class extends LabeledData for the
/// representation of data. In addition it holds and provides access to the corresponding weights.
///
/// WeightedLabeledData tries to mimic the underlying data as pairs of data tuples(input,label) and weights.
/// this means that when accessing a batch by calling batch(i) or choosing one of the iterators
/// one access the databatch by batch(i).data and the weights by batch(i).weight. to access the points and labels
/// use batch(i).data.input and batch(i).data.label
///
///this also holds true for single element access using operator(). Be aware, that direct access to element is
///a linear time operation. So it is not advisable to iterate over the elements, but instead iterate over the batches.
///
/// It is possible to gains everal views on the set. one can either get access to inputs, labels and weights separately
/// or gain access to the unweighted dataset of inputs and labels. Additionally the sets support on-the-fly creation
/// of the (inputs,weights) subset for unsupervised weighted learning
template <class InputT, class LabelT>
class WeightedLabeledData : public detail::BaseWeightedDataset <LabeledData<InputT,LabelT> >
{
private:
	typedef WeightedLabeledData<InputT,LabelT> self_type;
	typedef detail::BaseWeightedDataset <LabeledData<InputT,LabelT> > base_type;
public:
	typedef typename base_type::DataType DataType;
	typedef typename base_type::WeightType WeightType;
	typedef InputT InputType;
	typedef LabelT LabelType;
	typedef typename base_type::element_type element_type;

	using base_type::data;
	using base_type::weights;

	BOOST_STATIC_CONSTANT(std::size_t, DefaultBatchSize = (LabeledData<InputT,LabelT>::DefaultBatchSize));

	// CONSTRUCTORS

	///\brief Empty data set.
	WeightedLabeledData()
	{}

	///\brief Create an empty set with just the correct number of batches.
	///
	/// The user must initialize the dataset after that by himself.
	WeightedLabeledData(std::size_t numBatches)
	: base_type(numBatches)
	{}

	/// \brief Construtor using a single element as blueprint to create a dataset with a specified number of elements.
	///
	/// Optionally the desired batch Size can be set
	///
	///@param size the new size of the container
	///@param element the blueprint element from which to create the Container
	///@param batchSize the size of the batches. if this is 0, the size is unlimited
	WeightedLabeledData(std::size_t size, element_type const& element, std::size_t batchSize = DefaultBatchSize)
	: base_type(size,element,batchSize){}

	///\brief Construction from data.
	///
	/// Beware that when calling this constructor the organization of batches must be equal in both
	/// containers. This Constructor will not reorganize the data!
	WeightedLabeledData(LabeledData<InputType,LabelType> const& data, Data<WeightType> const& weights)
	: base_type(data,weights)
	{}
		
	///\brief Construction from data and a constant weight for all elements
	WeightedLabeledData(LabeledData<InputType,LabelType> const& data, double weight)
	: base_type(data,weight)
	{}
		
	///\brief Access to the inputs as a separate container.
	UnlabeledData<InputType> const& inputs() const{
		return data().inputs();
	}
	///\brief Access to the inputs as a separate container.
	UnlabeledData<InputType>& inputs(){
		return data().inputs();
	}
	
	///\brief Access to the labels as a separate container.
	Data<LabelType> const& labels() const{
		return data().labels();
	}
	///\brief Access to the labels as a separate container.
	Data<LabelType>& labels(){
		return data().labels();
	}
	
	/// \brief Constructs an WeightedUnlabeledData object for the inputs.
	WeightedUnlabeledData<InputType> weightedInputs() const{
		return WeightedUnlabeledData<InputType>(data().inputs(),weights());
	}

	///\brief Splits the container into two independent parts. The left part remains in the container, the right is stored as return type
	///
	///Order of elements remain unchanged. The SharedVector is not allowed to be shared for
	///this to work.
	self_type splice(std::size_t batch){
		return self_type(data().splice(batch),weights().splice(batch));
	}

	friend void swap(self_type& a, self_type& b){
		swap(static_cast<base_type&>(a),static_cast<base_type&>(b));
	}
};

///brief  Outstream of elements for weighted labeled data.
template<class T, class U>
std::ostream &operator << (std::ostream &stream, const WeightedLabeledData<T, U>& d) {
	typedef typename WeightedLabeledData<T, U>::const_element_reference reference;
	typename WeightedLabeledData<T, U>::const_element_range elements = d.elements();
	BOOST_FOREACH(reference elem,elements)
		stream << elem.weight <<" ("<< elem.data.label << " [" << elem.data.input<<"] )"<< "\n";
	return stream;
}

//Stuff for Dimensionality and querying of basic information

template<class InputType>
double sumOfWeights(WeightedUnlabeledData<InputType> const& dataset){
	double weightSum = 0;
	for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
		weightSum += sum(dataset.batch(i).weight);
	}
	return weightSum;
}
template<class InputType, class LabelType>
double sumOfWeights(WeightedLabeledData<InputType,LabelType> const& dataset){
	double weightSum = 0;
	for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
		weightSum += sum(dataset.batch(i).weight);
	}
	return weightSum;
}

inline std::size_t numberOfClasses(WeightedUnlabeledData<unsigned int> const& labels){
	return numberOfClasses(labels.data());
}

///\brief Returns the number of members of each class in the dataset.
inline std::vector<std::size_t> classSizes(WeightedUnlabeledData<unsigned int> const& labels){
	return classSizes(labels.data());
}

///\brief  Return the dimnsionality of points of a weighted dataset
template <class InputType>
std::size_t dataDimension(WeightedUnlabeledData<InputType> const& dataset){
	return dataDimension(dataset.data());
}

///\brief  Return the input dimensionality of a weighted labeled dataset.
template <class InputType, class LabelType>
std::size_t inputDimension(WeightedLabeledData<InputType, LabelType> const& dataset){
	return dataDimension(dataset.inputs());
}

///\brief  Return the label/output dimensionality of a labeled dataset.
template <class InputType, class LabelType>
std::size_t labelDimension(WeightedLabeledData<InputType, LabelType> const& dataset){
	return dataDimension(dataset.labels());
}
///\brief Return the number of classes (highest label value +1) of a classification dataset with unsigned int label encoding
template <class InputType>
std::size_t numberOfClasses(WeightedLabeledData<InputType, unsigned int> const& dataset){
	return numberOfClasses(dataset.labels());
}

///\brief Returns the number of members of each class in the dataset.
template<class InputType, class LabelType>
inline std::vector<std::size_t> classSizes(WeightedLabeledData<InputType, LabelType> const& dataset){
	return classSizes(dataset.labels());
}

//creation of weighted datasets

/// \brief creates a weighted unweighted data object from two ranges, representing data and weights
template<class InputRange,class LabelRange, class WeightRange>
typename boost::disable_if<
	boost::is_arithmetic<WeightRange>,
	WeightedLabeledData<
		typename boost::range_value<InputRange>::type,
		typename boost::range_value<LabelRange>::type
	>
>::type createLabeledDataFromRange(InputRange const& inputs, LabelRange const& labels, WeightRange const& weights, std::size_t batchSize = 0){
	SHARK_CHECK(boost::size(inputs) == boost::size(labels),
	"[createDataFromRange] number of data points and number of weights must agree");
	SHARK_CHECK(boost::size(inputs) == boost::size(weights),
	"[createDataFromRange] number of data points and number of weights must agree");
	typedef typename boost::range_value<InputRange>::type InputType;
	typedef typename boost::range_value<LabelRange>::type LabelType;

	if (batchSize == 0)
		batchSize = WeightedLabeledData<InputRange,LabelRange>::DefaultBatchSize;

	return WeightedLabeledData<InputType,LabelType>(
		createLabeledDataFromRange(inputs,labels,batchSize),
		createDataFromRange(weights,batchSize)
	);
}

/// \brief Creates a bootstrap partition of a labeled dataset and returns it using weighting.
///
/// Bootstrapping resamples the dataset by drawing a set of points with
/// replacement. Thus the sampled set will contain some points multiple times
/// and some points not at all. Bootstrapping is usefull to obtain unbiased
/// measurements of the mean and variance of an estimator.
///
/// Optionally the size of the bootstrap (that is, the number of sampled points)
/// can be set. By default it is 0, which indicates that it is the same size as the original dataset.
template<class InputType, class LabelType>
WeightedLabeledData< InputType, LabelType> bootstrap(
	LabeledData<InputType,LabelType> const& dataset,
	std::size_t bootStrapSize = 0
){
	if(bootStrapSize == 0)
		bootStrapSize = dataset.numberOfElements();
	
	WeightedLabeledData<InputType,LabelType> bootstrapSet(dataset,0.0);

	for(std::size_t i = 0; i != bootStrapSize; ++i){
		std::size_t index = Rng::discrete(0,bootStrapSize-1);
		bootstrapSet.element(index).weight += 1.0;
	}
	return bootstrapSet;
}

/// \brief Creates a bootstrap partition of an unlabeled dataset and returns it using weighting.
///
/// Bootstrapping resamples the dataset by drawing a set of points with
/// replacement. Thus the sampled set will contain some points multiple times
/// and some points not at all. Bootstrapping is usefull to obtain unbiased
/// measurements of the mean and variance of an estimator.
///
/// Optionally the size of the bootstrap (that is, the number of sampled points)
/// can be set. By default it is 0, which indicates that it is the same size as the original dataset.
template<class InputType>
WeightedUnlabeledData<InputType> bootstrap(
	UnlabeledData<InputType> const& dataset,
	std::size_t bootStrapSize = 0
){
	if(bootStrapSize == 0)
		bootStrapSize = dataset.numberOfElements();
	
	WeightedUnlabeledData<InputType> bootstrapSet(dataset,0.0);

	for(std::size_t i = 0; i != bootStrapSize; ++i){
		std::size_t index = Rng::discrete(0,bootStrapSize-1);
		bootstrapSet.element(index).weight += 1.0;
	}
	return bootstrapSet;
}

/** @*/
}

#endif