/usr/include/shark/LinAlg/ExampleModifiedKernelMatrix.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | //===========================================================================
/*!
*
*
* \brief Kernel matrix which supports kernel evaluations on data with missing features.
*
*
* \par
*
*
*
* \author T. Glasmachers
* \date 2007-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_LINALG_EXAMPLEMODIFIEDKERNELMATRIX_H
#define SHARK_LINALG_EXAMPLEMODIFIEDKERNELMATRIX_H
#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>
#include <vector>
#include <cmath>
namespace shark {
/// Kernel matrix which supports kernel evaluations on data with missing features. At the same time, the entry of the
/// Gram matrix between examples i and j can be multiplied by two scaling factors corresponding to
/// the examples i and j, respectively. To this end, this class holds a vector of as many scaling coefficients
/// as there are examples in the dataset.
/// @note: most of code in this class is borrowed from KernelMatrix by copy/paste, which is obviously terribly ugly.
/// We could/should refactor classes in this file as soon as possible.
template <typename InputType, typename CacheType>
class ExampleModifiedKernelMatrix
{
public:
typedef CacheType QpFloatType;
/// Constructor
/// \param kernelfunction kernel function defining the Gram matrix
/// \param data data to evaluate the kernel function
ExampleModifiedKernelMatrix(
AbstractKernelFunction<InputType> const& kernelfunction,
Data<InputType> const& data)
: kernel(kernelfunction)
, m_accessCounter( 0 )
{
std::size_t elements = data.numberOfElements();
x.resize(elements);
boost::iota(x,data.elements().begin());
}
/// return a single matrix entry
QpFloatType operator () (std::size_t i, std::size_t j) const
{ return entry(i, j); }
/// swap two variables
void flipColumnsAndRows(std::size_t i, std::size_t j)
{ std::swap(x[i], x[j]); }
/// return the size of the quadratic matrix
std::size_t size() const
{ return x.size(); }
/// query the kernel access counter
unsigned long long getAccessCount() const
{ return m_accessCounter; }
/// reset the kernel access counter
void resetAccessCount()
{ m_accessCounter = 0; }
/// return a single matrix entry
/// Override the Base::entry(...)
/// formula: \f$ K\left(x_i, x_j\right)\frac{1}{s_i}\frac{1}{s_j} \f$
QpFloatType entry(std::size_t i, std::size_t j) const
{
// typedef typename InputType::value_type InputValueType;
INCREMENT_KERNEL_COUNTER( m_accessCounter );
SIZE_CHECK(i < size());
SIZE_CHECK(j < size());
return (QpFloatType)evalSkipMissingFeatures(
kernel,
*x[i],
*x[j]) * (1.0 / m_scalingCoefficients[i]) * (1.0 / m_scalingCoefficients[j]);
}
/// \brief Computes the i-th row of the kernel matrix.
///
///The entries start,...,end of the i-th row are computed and stored in storage.
///There must be enough room for this operation preallocated.
void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{
for(std::size_t j = start; j < end; j++){
storage[j-start] = entry(i,j);
}
}
/// \brief Computes the kernel-matrix
template<class M>
void matrix(
blas::matrix_expression<M> & storage
) const{
for(std::size_t i = 0; i != size(); ++i){
for(std::size_t j = 0; j != size(); ++j){
storage(i,j) = entry(i,j);
}
}
}
void setScalingCoefficients(const RealVector& scalingCoefficients)
{
SIZE_CHECK(scalingCoefficients.size() == size());
m_scalingCoefficients = scalingCoefficients;
}
protected:
/// Kernel function defining the kernel Gram matrix
AbstractKernelFunction<InputType> const& kernel;
typedef typename Data<InputType>::const_element_range::const_iterator PointerType;
/// Array of data pointers for kernel evaluations
std::vector<PointerType> x;
/// counter for the kernel accesses
mutable unsigned long long m_accessCounter;
private:
/// The scaling coefficients
RealVector m_scalingCoefficients;
};
}
#endif
|