/usr/include/shark/LinAlg/GaussianKernelMatrix.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | //===========================================================================
/*!
*
*
* \brief Efficient special case if the kernel is gaussian and the inputs are sparse vectors
*
*
* \par
*
*
*
* \author T. Glasmachers
* \date 2007-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_LINALG_GAUSSIANKERNELMATRIX_H
#define SHARK_LINALG_GAUSSIANKERNELMATRIX_H
#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>
#include <vector>
#include <cmath>
namespace shark {
///\brief Efficient special case if the kernel is Gaussian and the inputs are sparse vectors
template <class T, class CacheType>
class GaussianKernelMatrix
{
public:
typedef CacheType QpFloatType;
typedef T InputType;
/// Constructor
/// \param gamma bandwidth parameter of Gaussian kernel
/// \param data data evaluated by the kernel function
GaussianKernelMatrix(
double gamma,
Data<InputType> const& data
)
: m_squaredNorms(data.numberOfElements())
, m_gamma(gamma)
, m_accessCounter( 0 )
{
std::size_t elements = data.numberOfElements();
x.resize(elements);
PointerType iter=data.elements().begin();
for(std::size_t i = 0; i != elements; ++i,++iter){
x[i]=iter;
m_squaredNorms(i) =inner_prod(*x[i],*x[i]);//precompute the norms
}
}
/// return a single matrix entry
QpFloatType operator () (std::size_t i, std::size_t j) const
{ return entry(i, j); }
/// return a single matrix entry
QpFloatType entry(std::size_t i, std::size_t j) const
{
++m_accessCounter;
double distance = m_squaredNorms(i)-2*inner_prod(*x[i], *x[j])+m_squaredNorms(j);
return (QpFloatType)std::exp(- m_gamma * distance);
}
/// \brief Computes the i-th row of the kernel matrix.
///
///The entries start,...,end of the i-th row are computed and stored in storage.
///There must be enough room for this operation preallocated.
void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const
{
typename ConstProxyReference<T>::type xi = *x[i];
m_accessCounter +=end-start;
SHARK_PARALLEL_FOR(int j = start; j < (int) end; j++)
{
double distance = m_squaredNorms(i)-2*inner_prod(xi, *x[j])+m_squaredNorms(j);
storage[j-start] = std::exp(- m_gamma * distance);
}
}
/// \brief Computes the kernel-matrix
template<class M>
void matrix(
blas::matrix_expression<M> & storage
) const{
for(std::size_t i = 0; i != size(); ++i){
row(i,0,size(),&storage()(i,0));
}
}
/// swap two variables
void flipColumnsAndRows(std::size_t i, std::size_t j){
using std::swap;
swap(x[i],x[j]);
swap(m_squaredNorms[i],m_squaredNorms[j]);
}
/// return the size of the quadratic matrix
std::size_t size() const
{ return x.size(); }
/// query the kernel access counter
unsigned long long getAccessCount() const
{ return m_accessCounter; }
/// reset the kernel access counter
void resetAccessCount()
{ m_accessCounter = 0; }
protected:
//~ typedef blas::sparse_vector_adaptor<typename T::value_type const,std::size_t> PointerType;
typedef typename Data<InputType>::const_element_range::iterator PointerType;
/// Array of data pointers for kernel evaluations
std::vector<PointerType> x;
RealVector m_squaredNorms;
double m_gamma;
/// counter for the kernel accesses
mutable unsigned long long m_accessCounter;
};
}
#endif
|