/usr/include/shark/LinAlg/ModifiedKernelMatrix.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | //===========================================================================
/*!
*
*
* \brief Modified Kernel Gram matrix
*
*
* \par
*
*
*
* \author T. Glasmachers
* \date 2007-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_LINALG_MODIFIEDKERNELMATRIX_H
#define SHARK_LINALG_MODIFIEDKERNELMATRIX_H
#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>
#include <vector>
#include <cmath>
namespace shark {
///
/// \brief Modified Kernel Gram matrix
///
/// \par
/// The ModifiedKernelMatrix represents the kernel matrix
/// multiplied element-wise with a factor depending on the
/// labels of the training examples. This is useful for the
/// MCMMR method (multi-class maximum margin regression).
template <class InputType, class CacheType>
class ModifiedKernelMatrix
{
private:
typedef KernelMatrix<InputType,CacheType> Matrix;
public:
typedef typename Matrix::QpFloatType QpFloatType;
/// Constructor
/// \param kernelfunction kernel function
/// \param data data to evaluate the kernel function
/// \param modifierEq multiplier for same-class labels
/// \param modifierNe multiplier for different-class kernels
ModifiedKernelMatrix(
AbstractKernelFunction<InputType> const& kernelfunction,
LabeledData<InputType, unsigned int> const& data,
QpFloatType modifierEq,
QpFloatType modifierNe
): m_matrix(kernelfunction,data.inputs())
, m_labels(data.numberOfElements())
, m_modifierEq(modifierEq)
, m_modifierNe(modifierNe){
for(std::size_t i = 0; i != m_labels.size(); ++i){
m_labels[i] = data.element(i).label;
}
}
/// return a single matrix entry
QpFloatType operator () (std::size_t i, std::size_t j) const
{ return entry(i, j); }
/// return a single matrix entry
QpFloatType entry(std::size_t i, std::size_t j) const
{
QpFloatType ret = m_matrix(i,j);
QpFloatType modifier = m_labels[i] == m_labels[j] ? m_modifierEq : m_modifierNe;
return modifier*ret;
}
/// \brief Computes the i-th row of the kernel matrix.
///
///The entries start,...,end of the i-th row are computed and stored in storage.
///There must be enough room for this operation preallocated.
void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{
m_matrix.row(i,start,end,storage);
//apply modifiers
unsigned int labeli = m_labels[i];
for(std::size_t j = start; j < end; j++){
QpFloatType modifier = (labeli == m_labels[j]) ? m_modifierEq : m_modifierNe;
storage[j-start] *= modifier;
}
}
/// \brief Computes the kernel-matrix
template<class M>
void matrix(
blas::matrix_expression<M> & storage
) const{
m_matrix.matrix(storage);
for(std::size_t i = 0; i != size(); ++i){
unsigned int labeli = m_labels[i];
for(std::size_t j = 0; j != size(); ++j){
QpFloatType modifier = (labeli == m_labels[j]) ? m_modifierEq : m_modifierNe;
storage()(i,j) *= modifier;
}
}
}
/// swap two variables
void flipColumnsAndRows(std::size_t i, std::size_t j){
m_matrix.flipColumnsAndRows(i,j);
std::swap(m_labels[i],m_labels[j]);
}
/// return the size of the quadratic matrix
std::size_t size() const
{ return m_matrix.size(); }
/// query the kernel access counter
unsigned long long getAccessCount() const
{ return m_matrix.getAccessCount(); }
/// reset the kernel access counter
void resetAccessCount()
{ m_matrix.resetAccessCount(); }
protected:
/// Kernel matrix which computes the basic entries.
Matrix m_matrix;
std::vector<unsigned int> m_labels;
/// modifier in case the labels are equal
QpFloatType m_modifierEq;
/// modifier in case the labels differ
QpFloatType m_modifierNe;
};
}
#endif
|