/usr/include/shark/Models/GaussianNoiseModel.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | /*!
*
*
* \brief Implements a Model using a linear function.
*
*
*
* \author O. Krause
* \date 2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_MODELS_GAUSSIANNOISEMODEL_H
#define SHARK_MODELS_GAUSSIANNOISEMODEL_H
#include <shark/Models/AbstractModel.h>
#include <shark/Rng/GlobalRng.h>
#include <shark/Core/OpenMP.h>
namespace shark {
/// \brief Model which corrupts the data using gaussian noise
///
/// When training autoencoders, it proved beneficial to add noise to the input
/// and train the model to remove that noise again, instead of only larning a
/// identity transformation. This Model represents one choice of Noise: Gaussian Noise,
/// to do this. the formula of corruption of an input \f$ x=(x_1,\dots,x_n) \f$ with variances
/// \f$ \sigma = (\sigma_1, \dots, \sigma_n) \f$ is
/// \f[ x_i \leftarrow x_i + N(0,\sigma_i) \f]
///
/// Usage is simple. given your autoencoder/decoder pair
/// ConvatenatedModel<RealVector,RealVector> autoencoder = encoder >> decoder;
/// we can just concatenate this model:
/// GaussianNoiseModel noise(0.1);//variance of noise
/// ConvatenatedModel<RealVector,RealVector> denoisingAutoencoder = noise>>autoencoder;
/// and train the model using the standard autoencoder error
class GaussianNoiseModel : public AbstractModel<RealVector,RealVector>
{
private:
RealVector m_variances;
public:
/// Default Constructor; use setStructure later
GaussianNoiseModel(){
m_features |= HAS_FIRST_PARAMETER_DERIVATIVE;
}
/// Constructor creating a model with given input size and the same variance for all inputs
GaussianNoiseModel(unsigned int inputs, double variance)
: m_variances(inputs,variance){
m_features |= HAS_FIRST_PARAMETER_DERIVATIVE;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "GaussianNoiseModel"; }
/// obtain the input dimension
size_t inputSize() const{
return m_variances.size();
}
/// obtain the output dimension
size_t outputSize() const{
return m_variances.size();
}
/// obtain the parameter vector
RealVector parameterVector() const{
return RealVector();
}
/// overwrite the parameter vector
void setParameterVector(RealVector const& newParameters)
{
SIZE_CHECK(newParameters.size() == 0);
}
/// return the number of parameter
size_t numberOfParameters() const{
return 0;
}
/// overwrite structure and parameters
void setStructure(unsigned int inputs, double variance){
m_variances = RealVector(inputs,variance);
}
/// overwrite structure and parameters
void setStructure(RealVector const& variances){
m_variances = variances;
}
RealVector const& variances() const{
return m_variances;
}
RealVector& variances(){
return m_variances;
}
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new EmptyState());
}
/// \brief Add noise to the input
void eval(BatchInputType const& inputs, BatchOutputType& outputs)const{
SIZE_CHECK(inputs.size2() == inputSize());
//we use the global Rng here so if this is a threaded region, we might
//run into troubles when multiple threads run this. This should not be a bottle neck
//as this routine should be quite fast, while very expensive routines are likely to
//follow in the networks following this.
SHARK_CRITICAL_REGION{
outputs = inputs;
for(std::size_t i = 0; i != outputs.size1(); ++i){
for(std::size_t j = 0; j != outputs.size2(); ++j){
outputs(i,j) += Rng::gauss(0,m_variances(j));
}
}
}
}
/// Evaluate the model: output = matrix * input + offset
void eval(BatchInputType const& inputs, BatchOutputType& outputs, State& state)const{
eval(inputs,outputs);
}
void weightedParameterDerivative(
BatchInputType const& patterns, RealVector const& coefficients, State const& state, RealVector& gradient
)const{
gradient.resize(0);
}
};
}
#endif
|