This file is indexed.

/usr/include/shark/Models/RBFLayer.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*!
 * 
 *
 * \brief      Implements a radial basis function layer.
 * 
 * 
 *
 * \author      O. Krause
 * \date        2014
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_MODELS_RBFLayer_H
#define SHARK_MODELS_RBFLayer_H

#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
#include <boost/math/constants/constants.hpp>
namespace shark {

///  \brief Implements a layer of radial basis functions in a neural network.
/// 
/// A Radial basis function layer as modeled in shark is a set of N
/// Gaussian distributions \f$ p(x|i) \f$.
/// \f[
///   p(x|i) = e^{\gamma_i*\|x-m_i\|^2}
/// \f]
/// and the layer transforms an input x to a vector \f$(p(x|1),\dots,p(x|N)\f$.
///  The \f$\gamma_i\f$ govern the width of the Gaussians, while the
///  vectors \f$ m_i \f$ set the centers of every Gaussian distribution. 
///
/// RBF networks profit much from good guesses on the centers and
/// kernel function parameters.  In case of a Gaussian kernel a call
/// to k-Means or the EM-algorithm can be used to get a good
/// initialisation for the network.
class RBFLayer : public AbstractModel<RealVector,RealVector>
{
private:
	struct InternalState: public State{
		RealMatrix norm2;
		RealMatrix p;
		
		void resize(std::size_t numPatterns, std::size_t numNeurons){
			norm2.resize(numPatterns,numNeurons);
			p.resize(numPatterns,numNeurons);
		}
	};

public:
	///  \brief Creates an empty Radial Basis Function layer.
	SHARK_EXPORT_SYMBOL RBFLayer();
	
	///  \brief Creates a layer of a Radial Basis Function Network.
	///
	///  This method creates a Radial Basis Function Network (RBFN) with
	///  \em numInput input neurons and \em numOutput output neurons.
	///
	///  \param  numInput  Number of input neurons, equal to dimensionality of
	///                    input space.
	///  \param  numOutput Number of output neurons, equal to dimensionality of
	///                    output space and number of gaussian distributions
	SHARK_EXPORT_SYMBOL RBFLayer(std::size_t numInput, std::size_t numOutput);

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "RBFLayer"; }

	///\brief Returns the current parameter vector. The amount and order of weights depend on the training parameters.
	///
	///The format of the parameter vector is \f$ (m_1,\dots,m_k,\log(\gamma_1),\dots,\log(\gamma_k))\f$
	///if training of one or more parameters is deactivated, they are removed from the parameter vector
	SHARK_EXPORT_SYMBOL RealVector parameterVector()const;
	
	///\brief Sets the new internal parameters.
	SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
	
	///\brief Returns the number of parameters which are currently enabled for training.
	SHARK_EXPORT_SYMBOL std::size_t numberOfParameters()const;

	///\brief Returns the number of input neurons.
	std::size_t inputSize()const{
		return m_centers.size2();
	}
	
	///\brief Returns the number of output neurons.
	std::size_t outputSize()const{
		return m_centers.size1();
	}
	
	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new InternalState());
	}
	
	
	///  \brief Configures a Radial Basis Function Network.
	///
	///  This method initializes the structure of the Radial Basis Function Network (RBFN) with
	///  \em numInput input neurons, \em numOutput output neurons and \em numHidden
	///  hidden neurons.
	///
	///  \param  numInput  Number of input neurons, equal to dimensionality of
	///                    input space.
	///  \param  numOutput Number of output neurons (basis functions), equal to dimensionality of
	///                    output space.
	SHARK_EXPORT_SYMBOL void setStructure(std::size_t numInput, std::size_t numOutput);

	
	using AbstractModel<RealVector,RealVector>::eval;
	SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const;
	

	SHARK_EXPORT_SYMBOL void weightedParameterDerivative(
		BatchInputType const& pattern, BatchOutputType const& coefficients, State const& state, RealVector& gradient
	)const;

	///\brief Enables or disables parameters for learning.
	///
	/// \param centers whether the centers should be trained
	/// \param width whether the distribution width should be trained
	SHARK_EXPORT_SYMBOL void setTrainingParameters(bool centers, bool width);

	///\brief Returns the center values of the neurons.
	BatchInputType const& centers()const{
		return m_centers;
	}
	///\brief Sets the center values of the neurons.
	BatchInputType& centers(){
		return m_centers;
	}
	
	///\brief Returns the width parameter of the Gaussian functions 
	RealVector const& gamma()const{
		return m_gamma;
	}
	
	/// \brief sets the width parameters - the gamma values - of the distributions.
	SHARK_EXPORT_SYMBOL void setGamma(RealVector const& gamma);
	
	/// From ISerializable, reads a model from an archive
	SHARK_EXPORT_SYMBOL void read( InArchive & archive );

	/// From ISerializable, writes a model to an archive
	SHARK_EXPORT_SYMBOL void write( OutArchive & archive ) const;
protected:
	//====model parameters

	///\brief The center points. The i-th element corresponds to the center of neuron number i
	RealMatrix m_centers;
	
	///\brief stores the width parameters of the Gaussian functions
	RealVector m_gamma;

	/// \brief the logarithm of the normalization constant for every distribution
	RealVector m_logNormalization;

	//=====training parameters
	///enables learning of the center points of the neurons
	bool m_trainCenters;
	///enables learning of the width parameters.
	bool m_trainWidth;



};
}

#endif