This file is indexed.

/usr/include/shark/ObjectiveFunctions/NegativeGaussianProcessEvidence.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//===========================================================================
/*!
 * 
 *
 * \brief       Evidence for model selection of a regularization network/Gaussian process.


 * 
 *
 * \author      C. Igel, T. Glasmachers, O. Krause
 * \date        2007-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_OBJECTIVEFUNCTIONS_NEGATIVEGAUSSIANPROCESSEVIDENCE_H
#define SHARK_OBJECTIVEFUNCTIONS_NEGATIVEGAUSSIANPROCESSEVIDENCE_H

#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/Models/Kernels/KernelHelpers.h>

#include <shark/LinAlg/Base.h>
#include <shark/LinAlg/solveTriangular.h>
#include <shark/LinAlg/Cholesky.h>
namespace shark {


///
/// \brief Evidence for model selection of a regularization network/Gaussian process.
///
/// Let \f$M\f$ denote the (kernel Gram) covariance matrix and
/// \f$t\f$ the corresponding label vector.  For the evidence we have: 
/// \f[ E = 1/2 \cdot [ -\log(\det(M)) - t^T M^{-1} t - N \log(2 \pi)] \f]
///
/// The evidence is also known as marginal (log)likelihood. For
/// details, please see:
///
/// C.E. Rasmussen & C.K.I. Williams, Gaussian
/// Processes for Machine Learning, section 5.4, MIT Press, 2006
///
/// C.M. Bishop, Pattern Recognition and Machine Learning, section
/// 6.4.3, Springer, 2006
///
/// The regularization parameter can be encoded in different ways.
/// The exponential encoding is the proper choice for unconstraint optimization.
/// Be careful not to mix up different encodings between trainer and evidence.
template<class InputType = RealVector, class OutputType = RealVector, class LabelType = RealVector>
class NegativeGaussianProcessEvidence : public SingleObjectiveFunction
{
public:
	typedef LabeledData<InputType,LabelType> DatasetType;
	typedef AbstractKernelFunction<InputType> KernelType;

	/// \param dataset: training data for the Gaussian process
	/// \param kernel: pointer to external kernel function
	/// \param unconstrained: exponential encoding of regularization parameter for unconstraint optimization
	NegativeGaussianProcessEvidence(
		DatasetType const& dataset,
		KernelType* kernel,
		bool unconstrained = false
	): m_dataset(dataset)
	, mep_kernel(kernel)
	, m_unconstrained(unconstrained)
	{
		if (kernel->hasFirstParameterDerivative()) m_features |= HAS_FIRST_DERIVATIVE;
		setThreshold(0.);
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "NegativeGaussianProcessEvidence"; }
	
	std::size_t numberOfVariables()const{
		return 1+ mep_kernel->numberOfParameters();
	}

	/// Let \f$M\f$ denote the (kernel Gram) covariance matrix and
	/// \f$t\f$ the label vector.  For the evidence we have: \f[ E= 1/2 \cdot [ -\log(\det(M)) - t^T M^{-1} t - N \log(2 \pi) ] \f]
	double eval(const RealVector& parameters) const {
		std::size_t N  = m_dataset.numberOfElements(); 
		std::size_t kp = mep_kernel->numberOfParameters();
		// check whether argument has right dimensionality
		SHARK_ASSERT(1+kp == parameters.size());

		// keep track of how often the objective function is called
		m_evaluationCounter++;
		
		//set parameters
		RealVector kernelParams(kp);
		double betaInv = 0;
		blas::init(parameters) >> kernelParams, betaInv;
		if(m_unconstrained)
			betaInv = std::exp(betaInv); // for unconstraint optimization
		mep_kernel->setParameterVector(kernelParams);
		
		
		//generate kernel matrix and label vector
		RealMatrix M = calculateRegularizedKernelMatrix(*mep_kernel,m_dataset.inputs(),betaInv);
		//~ RealVector t = generateLabelVector();
		RealVector t = column(createBatch<RealVector>(m_dataset.labels().elements()),0);

		RealMatrix choleskyFactor(N,N);
		choleskyDecomposition(M, choleskyFactor);
		
		//compute the determinant of M using the cholesky factorization M=AA^T:
		//ln det(M) = 2 trace(ln A)
		double logDet = 2* trace(log(choleskyFactor));
		
		//we need to compute t^T M^-1 t 
		//= t^T (AA^T)^-1 t= t^T (A^-T A^-1)=||A^-1 t||^2
		//so we will first solve the triangular System Az=t
		//and then compute ||z||^2
		//since we don't need t anymore after that, we solve in-place and omit z
		blas::solveTriangularSystemInPlace<blas::SolveAXB,blas::lower>(choleskyFactor,t);

		// equation (6.69) on page 311 in the book C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
		// e = 1/2 \cdot [ -log(det(M)) - t^T M^{-1} t - N log(2 \pi) ]
		double e = 0.5 * (-logDet - norm_sqr(t) - N * std::log(2.0 * M_PI));

		// return the *negative* evidence
		return -e;
	}

	/// Let \f$M\f$ denote the regularized (kernel Gram) covariance matrix.
	/// For the evidence we have:
	/// \f[ E = 1/2 \cdot [ -\log(\det(M)) - t^T M^{-1} t - N \log(2 \pi) ] \f]
	/// For a kernel parameter \f$p\f$ and \f$C = \beta^{-1}\f$ we get the derivatives:
	/// \f[  dE/dC = 1/2 \cdot [ -tr(M^{-1}) + (M^{-1} t)^2 ] \f]
	/// \f[  dE/dp = 1/2 \cdot [ -tr(M^{-1} dM/dp) + t^T (M^{-1} dM/dp M^{-1}) t ] \f]
	double evalDerivative(const RealVector& parameters, FirstOrderDerivative& derivative) const {
		std::size_t N  = m_dataset.numberOfElements(); 
		std::size_t kp = mep_kernel->numberOfParameters();

		// check whether argument has right dimensionality
		SHARK_ASSERT(1 + kp == parameters.size());
		derivative.resize(1 + kp);
		
		// keep track of how often the objective function is called
		m_evaluationCounter++;

		//set parameters
		RealVector kernelParams(kp);
		double betaInv = 0;
		blas::init(parameters) >> kernelParams, betaInv;
		if(m_unconstrained)
			betaInv = std::exp(betaInv); // for unconstraint optimization
		mep_kernel->setParameterVector(kernelParams);
		
		
		//generate kernel matrix and label vector
		RealMatrix M = calculateRegularizedKernelMatrix(*mep_kernel,m_dataset.inputs(),betaInv);
		//~ RealVector t = generateLabelVector();
		RealVector t = column(createBatch<RealVector>(m_dataset.labels().elements()),0);
		
		//new way to compute inverse and logDetM
		RealMatrix choleskyFactor(N,N);
		choleskyDecomposition(M, choleskyFactor);
		//we dont need M anymore, so save a lot of memory by freeing the memory of M
		M=RealMatrix();
		
		// compute derivative w.r.t. kernel parameters
		//the derivative is defined as:
		//dE/da = -tr(IM dM/da) +t^T IM dM/da IM t
		// where IM is the inverse matrix of M, tr is the trace and a are the parameters of the kernel
		//by substituting z = IM t we can expand the operations to:
		//dE/da = -(sum_i sum_j IM_ij * dM_ji/da)+(sum_i sum_j dM_ij/da *z_i * z_j)
		//           =  sum_i sum_j (-IM_ij+z_i * z_j) * dM_ij/da
		// with W = -IM + zz^T we get
		// dE/da = sum_i sum_j W dM_ij/da
		//this can be calculated as blockwise derivative.
		
		//compute inverse matrix from the cholesky dcomposition 
		//using forward-backward substitution,
		RealMatrix W=RealIdentityMatrix(N);
		blas::solveTriangularCholeskyInPlace<blas::SolveAXB>(choleskyFactor,W);
		
		//calculate z = Wt=M^-1 t
		RealVector z = prod(W,t);
		
		// W is already initialized as the inverse of M, so we only need 
		// to change the sign and add z. to calculate W fully
		W*=-1;
		W+=outer_prod(z,z);
		
		
		//now calculate the derivative
		RealVector kernelGradient = 0.5*calculateKernelMatrixParameterDerivative(*mep_kernel,m_dataset.inputs(),W);
		
		// compute derivative w.r.t. regularization parameter
		//we have: dE/dC = 1/2 * [ -tr(M^{-1}) + (M^{-1} t)^2
		// which can also be written as 1/2 tr(W)
		double betaInvDerivative = 0.5 * trace(W) ;
		if(m_unconstrained) 
			betaInvDerivative *= betaInv;
		
		//merge both derivatives and since we return the negative evidence, multiply with -1
		blas::init(derivative)<<kernelGradient,betaInvDerivative;
		derivative *= -1.0;

		// truncate gradient vector 
		for(std::size_t i=0; i<derivative.size(); i++) 
			if(std::abs(derivative(i)) < m_derivativeThresholds(i)) derivative(i) = 0;

		// compute the evidence
		//compute determinant of M (see eval for why this works)
		double logDetM = 2* trace(log(choleskyFactor));
		double e = 0.5 * (-logDetM - inner_prod(t, z) - N * std::log(2.0 * M_PI));
		return -e;
	}
	
	/// set threshold value for truncating partial derivatives
	void setThreshold(double d) {
		m_derivativeThresholds = RealVector(mep_kernel->numberOfParameters() + 1, d); // plus one parameter for the prior 
	}

	/// set threshold values for truncating partial derivatives
	void setThresholds(RealVector &c) {
		SHARK_ASSERT(m_derivativeThresholds.size() == c.size());
		m_derivativeThresholds = c;
	}
		

private:
	/// pointer to external data set
	DatasetType m_dataset;

	/// thresholds for setting derivatives to zero
	RealVector  m_derivativeThresholds;

	/// pointer to external kernel function
	KernelType* mep_kernel;

	/// Indicates whether log() of the regularization parameter is
	/// considered. This is useful for unconstraint
	/// optimization. The default value is false.
	bool m_unconstrained; 
};


}
#endif