This file is indexed.

/usr/include/shark/ObjectiveFunctions/RadiusMarginQuotient.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*!
 * 
 *
 * \brief       Radius Margin Quotient for SVM model selection
 * 
 * 
 *
 * \author      T.Glasmachers, O.Krause
 * \date        2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_OBJECTIVEFUNCTIONS_RADIUSMARGINQUOTIENT_H
#define SHARK_OBJECTIVEFUNCTIONS_RADIUSMARGINQUOTIENT_H


#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/Algorithms/QP/SvmProblems.h>
#include <shark/Models/Kernels/KernelHelpers.h>
#include <shark/LinAlg/CachedMatrix.h>
#include <shark/LinAlg/KernelMatrix.h>

namespace shark {


///
/// \brief radius margin quotions for binary SVMs
///
/// \par
/// The RadiusMarginQuotient is the quotient \f$ R^2 / \rho^2 \f$
/// of the radius R of the smallest sphere containing the
/// training data and the margin \f$\rho\f$ of a binary hard margin
/// support vector machine. Both distances depend on the
/// kernel function, and thus on its parameters.
/// The radius margin quotient is a common objective
/// function for the adaptation of the kernel parameters
/// of a binary hard-margin SVM.
///
template<class InputType, class CacheType = float>
class RadiusMarginQuotient : public SingleObjectiveFunction
{
public:
	typedef CacheType QpFloatType;

	typedef KernelMatrix<InputType, QpFloatType> KernelMatrixType;
	typedef CachedMatrix< KernelMatrixType > CachedMatrixType;

	typedef LabeledData<InputType, unsigned int> DatasetType;
	typedef AbstractKernelFunction<InputType> KernelType;

	/// \brief Constructor.
	RadiusMarginQuotient(DatasetType const& dataset, KernelType* kernel)
	: mep_kernel(kernel),m_dataset(dataset)
	{
		m_features |= HAS_VALUE;
		if (mep_kernel->hasFirstParameterDerivative())
			m_features |= HAS_FIRST_DERIVATIVE;
	}


	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "RadiusMarginQuotient"; }

	std::size_t numberOfVariables()const{
		return mep_kernel->numberOfParameters();
	}

	/// \brief Evaluate the radius margin quotient.
	///
	/// \par
	/// The parameters are passed into the kernel, and the
	/// radius-margin quotient is computed w.r.t. the
	/// kernel-induced metric.
	double eval(SearchPointType const& parameters) const{
		SIZE_CHECK(parameters.size() == mep_kernel->numberOfParameters());
		SHARK_CHECK(! m_dataset.empty(), "[RadiusMarginQuotient::eval] call setDataset first");
		m_evaluationCounter++;
		
		
		mep_kernel->setParameterVector(parameters);

		Result result = computeRadiusMargin();

		return result.w2 * result.R2;
	}

	/// \brief Evaluate the radius margin quotient and its first derivative.
	///
	/// \par
	/// The parameters are passed into the kernel, and the
	/// radius-margin quotient and its derivative are computed
	/// w.r.t. the kernel-induced metric.
	double evalDerivative(SearchPointType const& parameters, FirstOrderDerivative& derivative) const{
		SHARK_CHECK(! m_dataset.empty(), "[RadiusMarginQuotient::evalDerivative] call setDataset first");
		SIZE_CHECK(parameters.size() == mep_kernel->numberOfParameters());
		m_evaluationCounter++;
		
		mep_kernel->setParameterVector(parameters);

		Result result = computeRadiusMargin();
		
		derivative = calculateKernelMatrixParameterDerivative(
			*mep_kernel, m_dataset.inputs(),
			result.w2*(RealDiagonalMatrix(result.beta)-outer_prod(result.beta,result.beta))
			-result.R2*outer_prod(result.alpha,result.alpha)
		);
		
		
		return result.w2 * result.R2;
	}

protected:
	struct Result{
		RealVector alpha;
		RealVector beta;
		double w2;
		double R2;
	};
	
	Result computeRadiusMargin()const{
		std::size_t ell = m_dataset.numberOfElements();
		
		QpStoppingCondition stop;
		Result result;
		{
			KernelMatrixType km(*mep_kernel, m_dataset.inputs());
			CachedMatrixType cache(&km);
			typedef CSVMProblem<CachedMatrixType> SVMProblemType;
			typedef SvmShrinkingProblem<SVMProblemType> ProblemType;
			
			SVMProblemType svmProblem(cache,m_dataset.labels(),1e100);
			ProblemType problem(svmProblem);
			
			QpSolver< ProblemType> solver(problem);
			QpSolutionProperties prop;
			solver.solve(stop, &prop);
			result.w2 = 2.0 * prop.value;
			result.alpha = problem.getUnpermutedAlpha();
		}
		{
			// create and solve the radius problem (also a quadratic program)
			KernelMatrixType km(*mep_kernel, m_dataset.inputs());
			CachedMatrixType cache(&km);
			typedef BoxedSVMProblem<CachedMatrixType> SVMProblemType;
			typedef SvmShrinkingProblem<SVMProblemType> ProblemType;
			
			// Setup the problem
			RealVector linear(ell);
			for (std::size_t i=0; i<ell; i++){
				linear(i) = 0.5 * km(i, i);
			}
			SVMProblemType svmProblem(cache,linear,0.0,1.0);
			ProblemType problem(svmProblem);
			
			//solve it
			QpSolver< ProblemType> solver(problem);
			QpSolutionProperties prop;
			solver.solve(stop, &prop);
			result.R2 = 2.0 * prop.value;
			result.beta = problem.getUnpermutedAlpha();
		}
		return result;
	}
	
	KernelType* mep_kernel;            ///< underlying parameterized kernel object
	DatasetType m_dataset;                  ///< labeled data for radius and (hard) margin computation
	
};


}
#endif