/usr/include/shogun/classifier/svm/OnlineLibLinear.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2007-2010 Soeren Sonnenburg
* Written (W) 2011 Shashwat Lal Das
* Modifications (W) 2013 Thoralf Klein
* Copyright (c) 2007-2009 The LIBLINEAR Project.
* Copyright (C) 2007-2010 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _ONLINELIBLINEAR_H__
#define _ONLINELIBLINEAR_H__
#include <shogun/lib/config.h>
#include <shogun/lib/SGVector.h>
#include <shogun/lib/common.h>
#include <shogun/base/Parameter.h>
#include <shogun/machine/OnlineLinearMachine.h>
namespace shogun
{
/** @brief Class implementing a purely online version of LibLinear,
* using the L2R_L1LOSS_SVC_DUAL solver only. */
class COnlineLibLinear : public COnlineLinearMachine
{
public:
/** problem type */
MACHINE_PROBLEM_TYPE(PT_BINARY);
/** Default constructor */
COnlineLibLinear();
/**
* Constructor
*
* @param C Cost constant C
*/
COnlineLibLinear(float64_t C);
/**
* Constructor
*
* @param C Cost constant C
* @param traindat Training examples
*/
COnlineLibLinear(float64_t C, CStreamingDotFeatures* traindat);
/**
* Copy Constructor
* @param mch another COnlineLibLinear machine
*/
COnlineLibLinear(COnlineLibLinear *mch);
/** Destructor */
virtual ~COnlineLibLinear();
/**
* Set C1 and C2 constants
*
* @param c_neg C1 value
* @param c_pos C2 value
*/
virtual void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
/**
* Get constant C1
*
* @return C1
*/
virtual float64_t get_C1() { return C1; }
/**
* Get constant C2
*
* @return C2
*/
float64_t get_C2() { return C2; }
/**
* Set whether to use bias or not
*
* @param enable_bias true if bias should be used
*/
virtual void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
/**
* Check if bias is enabled
*
* @return If bias is enabled
*/
virtual bool get_bias_enabled() { return use_bias; }
/** @return Object name */
virtual const char* get_name() const { return "OnlineLibLinear"; }
/** start training */
virtual void start_train();
/** stop training */
virtual void stop_train();
/** train on one example
* @param feature the feature object containing the current example. Note that get_next_example
* is already called so relevalent methods like dot() and dense_dot() can be directly
* called. WARN: this function should only process ONE example, and get_next_example()
* should NEVER be called here. Use the label passed in the 2nd parameter, instead of
* get_label() from feature, because sometimes the features might not have associated
* labels or the caller might want to provide some other labels.
* @param label label of this example
*/
virtual void train_example(CStreamingDotFeatures *feature, float64_t label);
/** train on one vector
* @param ex the example being trained
* @param label label of this example
*/
virtual void train_one(SGVector<float32_t> ex, float64_t label);
/** train on one *sparse* vector
* @param ex the example being trained
* @param label label of this example
*/
virtual void train_one(SGSparseVector<float32_t> ex, float64_t label);
private:
/** Set up parameters */
void init();
private:
/// use bias or not
bool use_bias;
/// C1 value
float64_t C1;
/// C2 value
float64_t C2;
private:
//========================================
// "local" variables used during training
float64_t C, d, G;
float64_t QD;
// y and alpha for example being processed
int32_t y_current;
float64_t alpha_current;
// Cost constants
float64_t Cp;
float64_t Cn;
// PG: projected gradient, for shrinking and stopping
float64_t PG;
float64_t PGmax_old;
float64_t PGmin_old;
float64_t PGmax_new;
float64_t PGmin_new;
// Diag is probably unnecessary
float64_t diag[3];
float64_t upper_bound[3];
// Objective value = v/2
float64_t v;
// Number of support vectors
int32_t nSV;
};
}
#endif // _ONLINELIBLINEAR_H__
|