/usr/include/shogun/classifier/svm/SVMLin.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2006-2009 Soeren Sonnenburg
* Copyright (C) 2006-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _SVMLIN_H___
#define _SVMLIN_H___
#include <shogun/lib/common.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/labels/Labels.h>
namespace shogun
{
/** @brief class SVMLin */
class CSVMLin : public CLinearMachine
{
public:
/** problem type */
MACHINE_PROBLEM_TYPE(PT_BINARY);
/** default constructor */
CSVMLin();
/** constructor
*
* @param C constant C
* @param traindat training features
* @param trainlab labels for features
*/
CSVMLin(
float64_t C, CDotFeatures* traindat,
CLabels* trainlab);
virtual ~CSVMLin();
/** get classifier type
*
* @return classifier type SVMLIN
*/
virtual EMachineType get_classifier_type() { return CT_SVMLIN; }
/** set C
*
* @param c_neg new C constant for negatively labeled examples
* @param c_pos new C constant for positively labeled examples
*
*/
inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
/** get C1
*
* @return C1
*/
inline float64_t get_C1() { return C1; }
/** get C2
*
* @return C2
*/
inline float64_t get_C2() { return C2; }
/** set if bias shall be enabled
*
* @param enable_bias if bias shall be enabled
*/
inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
/** get if bias is enabled
*
* @return if bias is enabled
*/
inline bool get_bias_enabled() { return use_bias; }
/** set epsilon
*
* @param eps new epsilon
*/
inline void set_epsilon(float64_t eps) { epsilon=eps; }
/** get epsilon
*
* @return epsilon
*/
inline float64_t get_epsilon() { return epsilon; }
/** @return object name */
virtual const char* get_name() const { return "SVMLin"; }
protected:
/** train SVM classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
protected:
/** C1 */
float64_t C1;
/** C2 */
float64_t C2;
/** epsilon */
float64_t epsilon;
/** if bias is used */
bool use_bias;
};
}
#endif
|