This file is indexed.

/usr/include/shogun/distributions/Gaussian.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Alesis Novik
 * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
 */

#ifndef _GAUSSIAN_H__
#define _GAUSSIAN_H__

#include <shogun/lib/config.h>

#ifdef HAVE_LAPACK

#include <shogun/distributions/Distribution.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/lib/common.h>
#include <shogun/mathematics/lapack.h>
#include <shogun/mathematics/Math.h>

namespace shogun
{
class CDotFeatures;

/** Covariance type */
enum ECovType
{
	/// full covariance
	FULL,
	/// diagonal covariance
	DIAG,
	/// spherical covariance
	SPHERICAL
};

/** @brief Gaussian distribution interface.
 *
 * Takes as input a mean vector and covariance matrix.
 * Also possible to train from data.
 * Likelihood is computed using the Gaussian PDF \f$(2\pi)^{-\frac{k}{2}}|\Sigma|^{-\frac{1}{2}}e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}\f$
 * The actual computations depend on the type of covariance used.
 */
class CGaussian : public CDistribution
{
	public:
		/** default constructor */
		CGaussian();
		/** constructor
		 *
		 * @param mean mean of the Gaussian
		 * @param cov covariance of the Gaussian
		 * @param cov_type covariance type (full, diagonal or shperical)
		 */
		CGaussian(const SGVector<float64_t> mean, SGMatrix<float64_t> cov, ECovType cov_type=FULL);
		virtual ~CGaussian();

		/** Compute the constant part */
		void init();

		/** learn distribution
		 *
		 * @param data training data
		 *
		 * @return whether training was successful
		 */
		virtual bool train(CFeatures* data=NULL);

		/** get number of parameters in model
		 *
		 * @return number of parameters in model
		 */
		virtual int32_t get_num_model_parameters();

		/** get model parameter (logarithmic)
		 *
		 * @return model parameter (logarithmic) if num_param < m_dim returns
		 * an element from the mean, else return an element from the covariance
		 */
		virtual float64_t get_log_model_parameter(int32_t num_param);

		/** get partial derivative of likelihood function (logarithmic)
		 *
		 * @param num_param derivative against which param
		 * @param num_example which example
		 * @return derivative of likelihood (logarithmic)
		 */
		virtual float64_t get_log_derivative(
			int32_t num_param, int32_t num_example);

		/** compute log likelihood for example
		 *
		 * abstract base method
		 *
		 * @param num_example which example
		 * @return log likelihood for example
		 */
		virtual float64_t get_log_likelihood_example(int32_t num_example);

		/** compute PDF
		 *
		 * @param point point for which to compute the PDF
		 * @return computed PDF
		 */
		virtual float64_t compute_PDF(SGVector<float64_t> point)
		{
			return CMath::exp(compute_log_PDF(point));
		}

		/** compute log PDF
		 *
		 * @param point point for which to compute the log PDF
		 * @return computed log PDF
		 */
		virtual float64_t compute_log_PDF(SGVector<float64_t> point);

		/** get mean
		 *
		 * @return mean
		 */
		virtual SGVector<float64_t> get_mean();

		/** set mean
		 *
		 * @param mean new mean
		 */
		virtual void set_mean(const SGVector<float64_t> mean);

		/** get covariance
		 *
		 * @return cov covariance, memory needs to be freed by user
		 */
		virtual SGMatrix<float64_t> get_cov();

		/** set covariance
		 *
		 * Doesn't store the covariance, but decomposes, thus the covariance can be freed after exit without harming the object
		 *
		 * @param cov new covariance
		 */
		virtual void set_cov(SGMatrix<float64_t> cov);

		/** get covariance type
		 *
		 * @return covariance type
		 */
		inline ECovType get_cov_type()
		{
			return m_cov_type;
		}

		/** set covariance type
		 *
		 * Will only take effect after covariance is changed
		 *
		 * @param cov_type new covariance type
		 */
		inline void set_cov_type(ECovType cov_type)
		{
			m_cov_type = cov_type;
		}

		/** get diagonal
		 *
		 * @return diagonal
		*/
		inline SGVector<float64_t> get_d()
		{
			return m_d;
		}

		/** set diagonal
		 *
		 * @param d new diagonal
		 */
		void set_d(const SGVector<float64_t> d);

		/** get unitary matrix
		 *
		 * @return unitary matrix
		*/
		inline SGMatrix<float64_t> get_u()
		{
			return m_u;
		}

		/** set unitary matrix
		 *
		 * @param u new unitary matrix
		 */
		inline void set_u(SGMatrix<float64_t> u)
		{
			m_u = u;
		}

		/** sample from distribution
		 *
		 * @return sample
		 */
		SGVector<float64_t> sample();

		/** @param distribution is casted to CGaussian, NULL if not possible
		 * Note that the object is SG_REF'ed
		 * @return casted CGaussian object
		 */
		static CGaussian* obtain_from_generic(CDistribution* distribution);

		/** @return object name */
		virtual const char* get_name() const { return "Gaussian"; }

	private:
		/** Initialize parameters for serialization */
		void register_params();

		/** decompose covariance matrix according to type
		 *
		 * @param cov covariance
		 */
		void decompose_cov(SGMatrix<float64_t> cov);

	protected:
		/** constant part */
		float64_t m_constant;
		/** diagonal */
		SGVector<float64_t> m_d;
		/** unitary matrix */
		SGMatrix<float64_t> m_u;
		/** mean */
		SGVector<float64_t> m_mean;
		/** covariance type */
		ECovType m_cov_type;
};
}
#endif //HAVE_LAPACK
#endif //_GAUSSIAN_H__