This file is indexed.

/usr/include/shogun/evaluation/ContingencyTableEvaluation.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Sergey Lisitsyn
 * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
 */

#ifndef CONTINGENCYTABLEEVALUATION_H_
#define CONTINGENCYTABLEEVALUATION_H_

#include <shogun/evaluation/BinaryClassEvaluation.h>
#include <shogun/labels/Labels.h>
#include <shogun/mathematics/Math.h>
#include <shogun/io/SGIO.h>

namespace shogun
{

class CLabels;

/** type of measure */
enum EContingencyTableMeasureType
{
	ACCURACY = 0,
	ERROR_RATE = 10,
	BAL = 20,
	WRACC = 30,
	F1 = 40,
	CROSS_CORRELATION = 50,
	RECALL = 60,
	PRECISION = 70,
	SPECIFICITY = 80,
	CUSTOM = 999
};

/** @brief The class ContingencyTableEvaluation
 * a base class used to evaluate 2-class classification
 * with TP, FP, TN, FN rates.
 *
 * This class has implementations of the measures listed below:
 *
 * Accuracy (ACCURACY): \f$ \frac{TP+TN}{N} \f$
 *
 * Error rate (ERROR_RATE): \f$ \frac{FP+FN}{N} \f$
 *
 * Balanced error (BAL): \f$ \frac{1}{2} \left( \frac{FN}{FN+TP} + \frac{FP}{FP+TN} \right) \f$
 *
 * Weighted relative accuracy (WRACC): \f$ \frac{TP}{TP+FN} - \frac{FP}{FP+TN} \f$
 *
 * F1 score (F1): \f$ \frac{2\cdot FP}{2\cdot TP + FP + FN} \f$
 *
 * Cross correlation coefficient (CROSS_CORRELATION):
 * \f$ \frac{TP\cdot TN - FP \cdot FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}} \f$
 *
 * Recall (RECALL): \f$ \frac{TP}{TP+FN} \f$
 *
 * Precision (PRECISION): \f$ \frac{TP}{TP+FP} \f$
 *
 * Specificity (SPECIFICITY): \f$ \frac{TN}{TN+FP} \f$
 *
 * Note that objects of this class should be used only if
 * computing of many different measures is required. In other case,
 * using helper classes (CAccuracyMeasure, ...) could be more
 * convenient.
 *
 */
class CContingencyTableEvaluation: public CBinaryClassEvaluation
{

public:

	/** constructor */
	CContingencyTableEvaluation() :
		CBinaryClassEvaluation(), m_type(ACCURACY), m_computed(false) {};

	/** constructor
	 * @param type type of measure (e.g ACCURACY)
	 */
	CContingencyTableEvaluation(EContingencyTableMeasureType type) :
		CBinaryClassEvaluation(), m_type(type), m_computed(false)  {};

	/** destructor */
	virtual ~CContingencyTableEvaluation() {};

	/** evaluate labels
	 * @param predicted labels
	 * @param ground_truth labels assumed to be correct
	 * @return evaluation result
	 */
	virtual float64_t evaluate(CLabels* predicted, CLabels* ground_truth);

	virtual EEvaluationDirection get_evaluation_direction() const;

	/** get name */
	virtual const char* get_name() const
	{
		return "ContingencyTableEvaluation";
	}

	/** accuracy
	 * @return computed accuracy
	 */
	inline float64_t get_accuracy() const
	{
		if (!m_computed)
			SG_ERROR("Uninitialized, please call evaluate first")

		return (m_TP+m_TN)/m_N;
	};

	/** error rate
	 * @return computed error rate
	 */
	inline float64_t get_error_rate() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return (m_FP + m_FN)/m_N;
	};

	/** Balanced error (BAL)
	 * @return computed BAL
	 */
	inline float64_t get_BAL() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return 0.5*(m_FN/(m_FN + m_TP) + m_FP/(m_FP + m_TN));
	};

	/** WRACC
	 * @return computed WRACC
	 */
	inline float64_t get_WRACC() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return m_TP/(m_FN + m_TP) - m_FP/(m_FP + m_TN);
	};

	/** F1
	 * @return computed F1 score
	 */
	inline float64_t get_F1() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return (2*m_TP)/(2*m_TP + m_FP + m_FN);
	};

	/** cross correlation
	 * @return computed cross correlation coefficient
	 */
	inline float64_t get_cross_correlation() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return (m_TP*m_TN-m_FP*m_FN)/CMath::sqrt((m_TP+m_FP)*(m_TP+m_FN)*(m_TN+m_FP)*(m_TN+m_FN));
	};

	/** recall
	 * @return computed recall
	 */
	inline float64_t get_recall() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return m_TP/(m_TP+m_FN);
	};

	/** precision
	 * @return computed precision
	 */
	inline float64_t get_precision() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return m_TP/(m_TP+m_FP);
	};

	/** specificity
	 * @return computed specificity
	 */
	inline float64_t get_specificity() const
	{
		if (!m_computed)
				SG_ERROR("Uninitialized, please call evaluate first")

		return m_TN/(m_TN+m_FP);
	};

	/** Returns number of True Positives
	 * @return number of true positives
	 */
	float64_t get_TP() const
	{
		return m_TP;
	}
	/** Returns number of False Positives
	 * @return number of false positives
	 */
	float64_t get_FP() const
	{
		return m_FP;
	}
	/** Returns number of True Negatives
	 * @return number of true negatives
	 */
	float64_t get_TN() const
	{
		return m_TN;
	}
	/** Returns number of True Negatives
	 * @return number of false negatives
	 */
	float64_t get_FN() const
	{
		return m_FN;
	}

	/** Computes custom score, not implemented
	 * @return custom score value
	 */
	virtual float64_t get_custom_score()
	{
		SG_NOTIMPLEMENTED
		return 0.0;
	}

	/** Returns custom direction, not implemented
	 * @return direction of custom score
	 */
	virtual EEvaluationDirection get_custom_direction() const
	{
		SG_NOTIMPLEMENTED
		return ED_MAXIMIZE;
	}

protected:

	/** get scores for TP, FP, TN, FN */
	void compute_scores(CBinaryLabels* predicted, CBinaryLabels* ground_truth);

	/** type of measure to evaluate */
	EContingencyTableMeasureType m_type;

	/** indicator of contingencies being computed */
	bool m_computed;

	/** total number of labels */
	int32_t m_N;

	/** number of true positive examples */
	float64_t m_TP;

	/** number of false positive examples */
	float64_t m_FP;

	/** number of true negative examples */
	float64_t m_TN;

	/** number of false negative examples */
	float64_t m_FN;
};

/** @brief class AccuracyMeasure
 * used to measure accuracy of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CAccuracyMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CAccuracyMeasure() : CContingencyTableEvaluation(ACCURACY) {};
	/* virtual destructor */
	virtual ~CAccuracyMeasure() {};
	/* name */
	virtual const char* get_name() const { return "AccuracyMeasure"; };
};

/** @brief class ErrorRateMeasure
 * used to measure error rate of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CErrorRateMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CErrorRateMeasure() : CContingencyTableEvaluation(ERROR_RATE) {};
	/* virtual destructor */
	virtual ~CErrorRateMeasure() {};
	/* name */
	virtual const char* get_name() const { return "ErrorRateMeasure"; };
};

/** @brief class BALMeasure
 * used to measure balanced error of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CBALMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CBALMeasure() : CContingencyTableEvaluation(BAL) {};
	/* virtual destructor */
	virtual ~CBALMeasure() {};
	/* name */
	virtual const char* get_name() const { return "BALMeasure"; };
};

/** @brief class WRACCMeasure
 * used to measure weighted relative accuracy of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CWRACCMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CWRACCMeasure() : CContingencyTableEvaluation(WRACC) {};
	/* virtual destructor */
	virtual ~CWRACCMeasure() {};
	/* name */
	virtual const char* get_name() const { return "WRACCMeasure"; };
};

/** @brief class F1Measure
 * used to measure F1 score of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CF1Measure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CF1Measure() : CContingencyTableEvaluation(F1) {};
	/* virtual destructor */
	virtual ~CF1Measure() {};
	/* name */
	virtual const char* get_name() const { return "F1Measure"; };
};

/** @brief class CrossCorrelationMeasure
 * used to measure cross correlation coefficient of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CCrossCorrelationMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CCrossCorrelationMeasure() : CContingencyTableEvaluation(CROSS_CORRELATION) {};
	/* virtual destructor */
	virtual ~CCrossCorrelationMeasure() {};
	/* name */
	virtual const char* get_name() const { return "CrossCorrelationMeasure"; };
};

/** @brief class RecallMeasure
 * used to measure recall of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CRecallMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CRecallMeasure() : CContingencyTableEvaluation(RECALL) {};
	/* virtual destructor */
	virtual ~CRecallMeasure() {};
	/* name */
	virtual const char* get_name() const { return "RecallMeasure"; };
};

/** @brief class PrecisionMeasure
 * used to measure precision of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CPrecisionMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CPrecisionMeasure() : CContingencyTableEvaluation(PRECISION) {};
	/* virtual destructor */
	virtual ~CPrecisionMeasure() {};
	/* name */
	virtual const char* get_name() const { return "PrecisionMeasure"; };
};

/** @brief class SpecificityMeasure
 * used to measure specificity of 2-class classifier.
 *
 * This class is also capable of measuring
 * any other rate using get_[measure name] methods
 * of CContingencyTableEvaluation class.
 *
 * Note that evaluate() should be called first.
 */
class CSpecificityMeasure: public CContingencyTableEvaluation
{
public:
	/* constructor */
	CSpecificityMeasure() : CContingencyTableEvaluation(SPECIFICITY) {};
	/* virtual destructor */
	virtual ~CSpecificityMeasure() {};
	/* name */
	virtual const char* get_name() const { return "SpecificityMeasure"; };
};
}
#endif /* CONTINGENCYTABLEEVALUATION_H_ */