/usr/include/shogun/features/DenseFeatures.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2010 Soeren Sonnenburg
* Written (W) 1999-2008 Gunnar Raetsch
* Written (W) 2011-2013 Heiko Strathmann
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
* Copyright (C) 2010 Berlin Institute of Technology
*/
#ifndef _DENSEFEATURES__H__
#define _DENSEFEATURES__H__
#include <shogun/lib/common.h>
#include <shogun/lib/Cache.h>
#include <shogun/io/File.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/lib/DataType.h>
namespace shogun {
template<class ST> class CStringFeatures;
template<class ST> class CDenseFeatures;
template<class ST> class SGMatrix;
class CDotFeatures;
/** @brief The class DenseFeatures implements dense feature matrices.
*
* The feature matrices are stored en-block in memory in fortran order, i.e.
* column-by-column, where a column denotes a feature vector.
*
* There are get_num_vectors() many feature vectors, of dimension
* get_num_features(). To access a feature vector call
* get_feature_vector() and when you are done treating it call
* free_feature_vector(). While free_feature_vector() is a NOP in most cases
* feature vectors might have been generated on the fly (due to a number
* preprocessors being attached to them).
*
* From this template class a number the following dense feature matrix types
* are used and supported:
*
* \li bool matrix - CDenseFeatures<bool>
* \li 8bit char matrix - CDenseFeatures<char>
* \li 8bit Byte matrix - CDenseFeatures<uint8_t>
* \li 16bit Integer matrix - CDenseFeatures<int16_t>
* \li 16bit Word matrix - CDenseFeatures<uint16_t>
* \li 32bit Integer matrix - CDenseFeatures<int32_t>
* \li 32bit Unsigned Integer matrix - CDenseFeatures<uint32_t>
* \li 32bit Float matrix - CDenseFeatures<float32_t>
* \li 64bit Float matrix - CDenseFeatures<float64_t>
* \li 64bit Float matrix <b>in a file</b> - CRealFileFeatures
* \li 64bit Tangent of posterior log-odds (TOP) features from HMM - CTOPFeatures
* \li 64bit Fisher Kernel (FK) features from HMM - CTOPFeatures
* \li 96bit Float matrix - CDenseFeatures<floatmax_t>
*
* Partly) subset access is supported for this feature type.
* Dense use the (inherited) add_subset(), remove_subset() functions.
* If done, all calls that work with features are translated to the subset.
* See comments to find out whether it is supported for that method.
* See also CFeatures class documentation
*/
template<class ST> class CDenseFeatures: public CDotFeatures
{
public:
/** constructor
*
* @param size cache size
*/
CDenseFeatures(int32_t size = 0);
/** copy constructor */
CDenseFeatures(const CDenseFeatures & orig);
/** constructor
*
* @param matrix feature matrix
*/
CDenseFeatures(SGMatrix<ST> matrix);
/** constructor
*
* @param src feature matrix
* @param num_feat number of features in matrix
* @param num_vec number of vectors in matrix
*/
CDenseFeatures(ST* src, int32_t num_feat, int32_t num_vec);
/** constructor loading features from file
*
* @param loader File object via which to load data
*/
CDenseFeatures(CFile* loader);
/** duplicate feature object
*
* @return feature object
*/
virtual CFeatures* duplicate() const;
virtual ~CDenseFeatures();
/** free feature matrix
*
* Any subset is removed
*/
void free_feature_matrix();
/** free feature matrix and cache
*
* Any subset is removed
*/
void free_features();
/** get feature vector
* for sample num from the matrix as it is if matrix is
* initialized, else return preprocessed compute_feature_vector (not
* implemented)
*
* @param num index of feature vector
* @param len length is returned by reference
* @param dofree whether returned vector must be freed by
* caller via free_feature_vector
* @return feature vector
*/
ST* get_feature_vector(int32_t num, int32_t& len, bool& dofree);
/** set feature vector num
*
* possible with subset
*
* @param vector vector
* @param num index if vector to set
*/
void set_feature_vector(SGVector<ST> vector, int32_t num);
/** get feature vector num
*
* possible with subset
*
* @param num index of vector
* @return feature vector
*/
SGVector<ST> get_feature_vector(int32_t num);
/** free feature vector
*
* possible with subset
*
* @param feat_vec feature vector to free
* @param num index in feature cache
* @param dofree if vector should be really deleted
*/
void free_feature_vector(ST* feat_vec, int32_t num, bool dofree);
/** free feature vector
*
* possible with subset
*
* @param vec feature vector to free
* @param num index in feature cache
*/
void free_feature_vector(SGVector<ST> vec, int32_t num);
/**
* Extracts the feature vectors mentioned in idx and replaces them in
* feature matrix in place.
*
* It does not resize the allocated memory block.
*
* not possible with subset
*
* @param idx index with examples that shall remain in the feature matrix
* @param idx_len length of the index
*
* Note: assumes idx is sorted
*/
void vector_subset(int32_t* idx, int32_t idx_len);
/**
* Extracts the features mentioned in idx and replaces them in
* feature matrix in place.
*
* It does not resize the allocated memory block.
*
* Not possible with subset.
*
* @param idx index with features that shall remain in the feature matrix
* @param idx_len length of the index
*
* Note: assumes idx is sorted
*/
void feature_subset(int32_t* idx, int32_t idx_len);
/** Getter the feature matrix
*
* in-place without subset
* a copy with subset
*
* @return matrix feature matrix
*/
SGMatrix<ST> get_feature_matrix();
/** steals feature matrix, i.e. returns matrix and
* forget about it
* subset is ignored
*
* @return matrix feature matrix
*/
SGMatrix<ST> steal_feature_matrix();
/** Setter for feature matrix
*
* any subset is removed
*
* num_cols is number of feature vectors
* num_rows is number of dims of vectors
* see below for definition of feature_matrix
*
* @param matrix feature matrix to set
*
*/
void set_feature_matrix(SGMatrix<ST> matrix);
/** get the pointer to the feature matrix
* num_feat,num_vectors are returned by reference
*
* subset is ignored
*
* @param num_feat number of features in matrix
* @param num_vec number of vectors in matrix
* @return feature matrix
*/
ST* get_feature_matrix(int32_t &num_feat, int32_t &num_vec);
/** get a transposed copy of the features
*
* possible with subset
*
* @return transposed copy
*/
CDenseFeatures<ST>* get_transposed();
/** compute and return the transpose of the feature matrix
* which will be prepocessed.
* num_feat, num_vectors are returned by reference
* caller has to clean up
*
* possible with subset
*
* @param num_feat number of features in matrix
* @param num_vec number of vectors in matrix
* @return transposed sparse feature matrix
*/
ST* get_transposed(int32_t &num_feat, int32_t &num_vec);
/** copy feature matrix
* store copy of feature_matrix, where num_features is the
* column offset, and columns are linear in memory
* see below for definition of feature_matrix
*
* not possible with subset
*
* @param src feature matrix to copy
*/
virtual void copy_feature_matrix(SGMatrix<ST> src);
/** obtain dense features from other dotfeatures
*
* removes any subset before
*
* @param df dotfeatures to obtain features from
*/
void obtain_from_dot(CDotFeatures* df);
/** apply preprocessor
*
* applies preprocessors to ALL features (subset removed before and
* restored afterwards)
*
* not possible with subset
*
* @param force_preprocessing if preprocssing shall be forced
* @return if applying was successful
*/
virtual bool apply_preprocessor(bool force_preprocessing = false);
/** get number of feature vectors
*
* @return number of feature vectors
*/
virtual int32_t get_num_vectors() const;
/** get number of features (of possible subset)
*
* @return number of features
*/
int32_t get_num_features() const;
/** set number of features
*
* @param num number to set
*/
void set_num_features(int32_t num);
/** set number of vectors
*
* not possible with subset
*
* @param num number to set
*/
void set_num_vectors(int32_t num);
/** Initialize cache
*
* not possible with subset
*/
void initialize_cache();
/** get feature class
*
* @return feature class DENSE
*/
virtual EFeatureClass get_feature_class() const;
/** get feature type
*
* @return templated feature type
*/
virtual EFeatureType get_feature_type() const;
/** reshape
*
* not possible with subset
*
* @param p_num_features new number of features
* @param p_num_vectors new number of vectors
* @return if reshaping was successful
*/
virtual bool reshape(int32_t p_num_features, int32_t p_num_vectors);
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* possible with subset
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df,
int32_t vec_idx2);
/** compute dot product between vector1 and a dense vector
*
* possible with subset
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2,
int32_t vec2_len);
/** add vector 1 multiplied with alpha to dense vector2
*
* possible with subset
*
* @param alpha scalar alpha
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
* @param abs_val if true add the absolute value
*/
virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1,
float64_t* vec2, int32_t vec2_len, bool abs_val = false);
/** get number of non-zero features in vector
*
* @param num which vector
* @return number of non-zero features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** load features from file
*
* @param loader File object via which to load data
*/
virtual void load(CFile* loader);
/** save features to file
*
* @param saver File object via which to save data
*/
virtual void save(CFile* saver);
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** iterator for dense features */
struct dense_feature_iterator
{
/** pointer to feature vector */
ST* vec;
/** index of vector */
int32_t vidx;
/** length of vector */
int32_t vlen;
/** if we need to free the vector*/
bool vfree;
/** feature index */
int32_t index;
};
#endif
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* possible with subset
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_first_feature
* and call free_feature_iterator to cleanup
*
* possible with subset
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_first_feature
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value,
void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_first_feature
*
* @param iterator as returned by get_first_feature
*/
virtual void free_feature_iterator(void* iterator);
/** Creates a new CFeatures instance containing copies of the elements
* which are specified by the provided indices.
*
* possible with subset
*
* @param indices indices of feature elements to copy
* @return new CFeatures instance with copies of feature data
*/
virtual CFeatures* copy_subset(SGVector<index_t> indices);
/** checks if the contents of this CDenseFeatures object are the same to
* the contents of rhs
*
* @param rhs other CDenseFeatures object to compare to this one
* @return whether they represent the same information
*/
virtual bool is_equal(CDenseFeatures* rhs);
/** Takes a list of feature instances and returns a new instance which is
* a concatenation of a copy if this instace's data and the given
* instancess data. Note that the feature types have to be equal.
*
* @param other feature object to append
* @return new feature object which contains copy of data of this
* instance and of given one
*/
CFeatures* create_merged_copy(CList* other);
/** Convenience method for method with same name and list as parameter.
*
* @param other feature object to append
* @return new feature object which contains copy of data of this
* instance and of given one
*/
CFeatures* create_merged_copy(CFeatures* other);
/** helper method used to specialize a base class instance
*
*/
static CDenseFeatures* obtain_from_generic(CFeatures* const base_features);
/** @return object name */
virtual const char* get_name() const { return "DenseFeatures"; }
protected:
/** compute feature vector for sample num
* if target is set the vector is written to target
* len is returned by reference
*
* NOT IMPLEMENTED!
*
* @param num num
* @param len len
* @param target
* @return feature vector
*/
virtual ST* compute_feature_vector(int32_t num, int32_t& len,
ST* target = NULL);
private:
void init();
protected:
/// number of vectors in cache
int32_t num_vectors;
/// number of features in cache
int32_t num_features;
/** Feature matrix and its associated number of
* vectors and features. Note that num_vectors / num_features
* above match matrix sizes if feature_matrix.matrix != NULL
* */
SGMatrix<ST> feature_matrix;
/** feature cache */
CCache<ST>* feature_cache;
};
}
#endif // _DENSEFEATURES__H__
|