This file is indexed.

/usr/include/shogun/features/HashedSparseFeatures.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Evangelos Anagnostopoulos
 * Copyright (C) 2013 Evangelos Anagnostopoulos
 */

#ifndef _HASHED_SPARSEFEATURES_H__
#define _HASHED_SPARSEFEATURES_H__

#include <shogun/features/SparseFeatures.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/lib/SGSparseVector.h>

namespace shogun
{
template <class ST> class CSparseFeatures;
template <class ST> class SGSparseVector;
class CDotFeatures;

/** @brief This class is identical to the CDenseFeatures class
 * except that it hashes each dimension to a new feature space.
 */
template <class ST> class CHashedSparseFeatures  : public CDotFeatures
{
public:

	/** constructor
	 *
	 * @param size cache size
	 * @param use_quadr whether to use quadratic features or not
	 * @param keep_lin_terms whether to maintain the linear terms in the computations
	 */
	CHashedSparseFeatures(int32_t size=0, bool use_quadr = false, bool keep_lin_terms = true);

	/** constructor
	 *
	 * @param feats	the sparse features to use as a base
	 * @param d new feature space dimension
	 * @param use_quadr whether to use quadratic features or not
	 * @param keep_lin_terms whether to maintain the linear terms in the computations
	 */
	CHashedSparseFeatures(CSparseFeatures<ST>* feats, int32_t d, bool use_quadr = false,
			bool keep_lin_terms = true);

	/** constructor
	 *
	 * @param matrix feature matrix
	 * @param d new feature space dimension
	 * @param use_quadr whether to use quadratic features or not
	 * @param keep_lin_terms whether to maintain the linear terms in the computations
	 */
	CHashedSparseFeatures(SGSparseMatrix<ST> matrix, int32_t d, bool use_quadr = false,
			bool keep_lin_terms = true);

	/** constructor loading features from file
	 *
	 * @param loader File object via which to load data
	 * @param d new feature space dimension
	 * @param use_quadr whether to use quadratic features or not
	 * @param keep_lin_terms whether to maintain the linear terms in the computations
	 */
	CHashedSparseFeatures(CFile* loader, int32_t d, bool use_quadr = false,
			bool keep_lin_terms = true);

	/** copy constructor */
	CHashedSparseFeatures(const CHashedSparseFeatures & orig);

	/** duplicate */
	virtual CFeatures* duplicate() const;

	/** destructor */
	virtual ~CHashedSparseFeatures();

	/** obtain the dimensionality of the feature space
	 *
	 * (not mix this up with the dimensionality of the input space, usually
	 * obtained via get_num_features())
	 *
	 * @return dimensionality
	 */
	virtual int32_t get_dim_feature_space() const;

	/** compute dot product between vector1 and vector2,
	 * appointed by their indices
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param df DotFeatures (of same kind) to compute dot product with
	 * @param vec_idx2 index of second vector
	 */
	virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df,
			int32_t vec_idx2);

	/** compute dot product between vector1 and a dense vector
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 */
	virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2,
			int32_t vec2_len);

	/** add vector 1 multiplied with alpha to dense vector2
	 *
	 * possible with subset
	 *
	 * @param alpha scalar alpha
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 * @param abs_val if true add the absolute value
	 */
	virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1,
			float64_t* vec2, int32_t vec2_len, bool abs_val = false);

	/** get number of non-zero features in vector
	 *
	 * @param num which vector
	 * @return number of non-zero features in vector
	 */
	virtual int32_t get_nnz_features_for_vector(int32_t num);

	/** iterate over the non-zero features
	 *
	 * call get_feature_iterator first, followed by get_next_feature and
	 * free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param vector_index the index of the vector over whose components to
	 *			iterate over
	 * @return feature iterator (to be passed to get_next_feature)
	 */
	virtual void* get_feature_iterator(int32_t vector_index);

	/** iterate over the non-zero features
	 *
	 * call this function with the iterator returned by get_first_feature
	 * and call free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param index is returned by reference (-1 when not available)
	 * @param value is returned by reference
	 * @param iterator as returned by get_first_feature
	 * @return true if a new non-zero feature got returned
	 */
	virtual bool get_next_feature(int32_t& index, float64_t& value,
			void* iterator);

	/** clean up iterator
	 * call this function with the iterator returned by get_first_feature
	 *
	 * @param iterator as returned by get_first_feature
	 */
	virtual void free_feature_iterator(void* iterator);

	/** @return object name */
	virtual const char* get_name() const;

	/** get feature type
	 *
	 * @return templated feature type
	 */
	virtual EFeatureType get_feature_type() const;

	/** get feature class
	 *
	 * @return feature class DENSE
	 */
	virtual EFeatureClass get_feature_class() const;

	/** get number of feature vectors
	 *
	 * @return number of feature vectors
	 */
	virtual int32_t get_num_vectors() const;

	/** Get the hashed representation of the specified vector
	 *
	 * @param vec_idx the index of the vector
	 */
	SGSparseVector<ST> get_hashed_feature_vector(int32_t vec_idx) const;

	/** Get the hashed representation of the given vector
	 *
	 * @param vec the vector to hash
	 * @param dim the dimension of the new feature space
	 * @param use_quadratic whether to use quadratic features or not
	 * @param keep_linear_terms whether to maintain the linear terms in the computations
	 * @return the hashed representation of the vector vec
	 */
	static SGSparseVector<ST> hash_vector(SGVector<ST> vec, int32_t dim,
		bool use_quadratic = false, bool keep_linear_terms = true);


	/** Get the hashed representation of the given sparse vector
	 *
	 * @param vec the vector to hash
	 * @param dim the dimension of the hashed target space
	 * @param use_quadratic whether to use quadratic features or not
	 * @param keep_linear_terms whether to maintain the linear terms in the computations
	 * @return the hashed representation of the vector vec
	 */
	static SGSparseVector<ST> hash_vector(SGSparseVector<ST> vec, int32_t dim,
		bool use_quadratic = false, bool keep_linear_terms = true);

private:
	void init(CSparseFeatures<ST>* feats, int32_t d, bool use_quadr, bool keep_lin_terms);

protected:

	/** sparse features */
	CSparseFeatures<ST>* sparse_feats;

	/** new feature space dimension */
	int32_t dim;

	/** use quadratic features */
	bool use_quadratic;

	/** keep linear terms */
	bool keep_linear_terms;
};
}

#endif // _HASHED_SPARSEFEATURES_H__