This file is indexed.

/usr/include/shogun/loss/LogLoss.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Shashwat Lal Das
 * Written (W) 2012 Fernando José Iglesias García
 * Copyright (c) 2011 Berlin Institute of Technology and Max-Planck-Society.
 */

#ifndef _LOGLOSS_H__
#define _LOGLOSS_H__

#include <shogun/loss/LossFunction.h>

namespace shogun
{
/**@brief CLogLoss implements the logarithmic loss
 * function.
 */
class CLogLoss: public CLossFunction
{
public:
	/**
	 * Constructor
	 */
	CLogLoss(): CLossFunction() {};

	/**
	 * Destructor
	 */
	~CLogLoss() {};

	/**
	 * Get loss for an example
	 *
	 * @param z where to evaluate the loss
	 *
	 * @return loss
	 */
	float64_t loss(float64_t z);

	/**
	 * Get first derivative of the loss function
	 *
	 * @param z where to evaluate the derivative of the loss
	 *
	 * @return first derivative
	 */
	virtual float64_t first_derivative(float64_t z);

	/**
	 * Get second derivative of the loss function
	 *
	 * @param z where to evaluate the second derivative of the loss
	 *
	 * @return second derivative
	 */
	virtual float64_t second_derivative(float64_t z);

	/**
	 * Get importance aware weight update for this loss function
	 *
	 * @param prediction prediction
	 * @param label label
	 * @param eta_t learning rate at update number t
	 * @param norm scale value
	 *
	 * @return update
	 */
	virtual float64_t get_update(float64_t prediction, float64_t label, float64_t eta_t, float64_t norm);

	/**
	 * Get square of gradient, used for adaptive learning
	 *
	 * @param prediction prediction
	 * @param label label
	 *
	 * @return square of gradient
	 */
	virtual float64_t get_square_grad(float64_t prediction, float64_t label);

	/**
	 * Return loss type
	 *
	 * @return L_LOGLOSS
	 */
	virtual ELossType get_loss_type() { return L_LOGLOSS; }

	virtual const char* get_name() const { return "LogLoss"; }
};

}

#endif