This file is indexed.

/usr/include/shogun/loss/SquaredHingeLoss.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Shashwat Lal Das
 * Written (W) 2012 Fernando José Iglesias García
 * Copyright (c) 2011 Berlin Institute of Technology and Max-Planck-Society.
 */

#ifndef _SQUAREDHINGELOSS_H__
#define _SQUAREDHINGELOSS_H__

#include <shogun/loss/LossFunction.h>

namespace shogun
{
/** @brief Class CSquaredHingeLoss implements a
 * squared hinge loss function.
 */
class CSquaredHingeLoss: public CLossFunction
{
public:
	/**
	 * Constructor
	 */
	CSquaredHingeLoss(): CLossFunction() {};

	/**
	 * Destructor
	 */
	~CSquaredHingeLoss() {};

	/**
	 * Get loss for an example
	 *
	 * @param z where to evaluate the loss
	 *
	 * @return loss
	 */
	float64_t loss(float64_t z);

	/**
	 * Get first derivative of the loss function
	 *
	 * @param z where to evaluate the derivative of the loss
	 *
	 * @return first derivative
	 */
	float64_t first_derivative(float64_t z);

	/**
	 * Get second derivative of the loss function
	 *
	 * @param z where to evaluate the second derivative of the loss
	 *
	 * @return second derivative
	 */
	float64_t second_derivative(float64_t z);

	/**
	 * Get importance aware weight update for this loss function
	 *
	 * @param prediction prediction
	 * @param label label
	 * @param eta_t learning rate at update number t
	 * @param norm scale value
	 *
	 * @return update
	 */
	virtual float64_t get_update(float64_t prediction, float64_t label, float64_t eta_t, float64_t norm);

	/**
	 * Get square of gradient, used for adaptive learning
	 *
	 * @param prediction prediction
	 * @param label label
	 *
	 * @return square of gradient
	 */
	virtual float64_t get_square_grad(float64_t prediction, float64_t label);

	/**
	 * Return loss type
	 *
	 * @return L_SQUAREDHINGELOSS
	 */
	virtual ELossType get_loss_type() { return L_SQUAREDHINGELOSS; }

	/**
	 * Return the name of the object
	 *
	 * @return SquaredHingeLoss
	 */
	virtual const char* get_name() const { return "SquaredHingeLoss"; }
};

}

#endif // _SQUAREDHINGELOSS_H__